Datasheet

32
Chapter 1
Hardware
certain aspects outperformed its more expensive counterpart. Intel has also named its low-
budget Pentium III CPUs Celeron.
The Celeron CPU has come in several package types, including a 370-pin PGA socket
(Socket 370) and an SECC variant called single-edge processor (SEP) that is similar to the
circuit board inside an SECC cartridge but without the plastic outer shell.
PENTIUM III
The Pentium III was released in 1999 and uses the same SECC connector as its predeces-
sor, the Pentium II. It included 70 new instructions and a processor serial number (PSN),
a unique number electronically encoded into the processor. This number can be used to
uniquely identify a system during Internet transactions.
The Pentium III has two styles: an SECC-style cartridge called SECC2, and a PGA-style
chip with 370 pins. The Pentium III PGA chip has the CPU chip mounted on the top rather
than the bottom of the ceramic square; it’s called a flip chip (FC), or FC-PGA.
Like the Pentium II, the Pentium III has a multiprocessor Xeon version as well.
PENTIUM 4
The Pentium 4 was released in 2002. It runs on a motherboard with a fast system bus
(between 400MHz and 800MHz) and provides some incremental improvements over the
Pentium III. It’s a PGA-style CPU.
One of the improvements the Pentium 4 offers is hyperthreading technology. This feature
enables the computer to multitask more efficiently between CPU-demanding applications.
Dual-core processors, available from Intel as well as AMD, essentially com-
bine two processors into one chip. Instead of adding two processors to a
machine (making it a multiprocessor system), you have one chip splitting
operations and essentially performing as if it’s two processors in order to get
better performance. The Centrino processor, for example, was released in
2003 and combines Wi-Fi capability with a multicore processor. A multicore
architecture simply has multiple completely separate processor dies in the
same package, whether its dual core, triple core, or quad core. The operating
system and applications see multiple processors in the same way that they
see multiple processors in separate sockets. Both dual-core and quad-core
processors are common specific cases for the multicore technology. Most
multicore processors from Intel come in even numbers, while AMD’s Phe-
nom series can contain odd numbers (such as the triple-core processor).
SUMMARY OF INTEL PROCESSORS
Table 1.3 provides a summary of the history of the Intel processors. Table 1.4 shows the
physical characteristics of Pentium-class (and higher-class) processors.
86504c01.indd 32 7/25/09 6:04:17 PM