User's Manual
Table Of Contents
- Chapter 1 Introduction
- Product Description and Contents
- Product Features
- Chapter 2 Quick Start
- Rooftop and Tower Installations Warning
- Installation Steps
- Installation Diagrams
- Chapter 3 Hardware
- Drawings of Components
- SPEEDLAN 8500 ODU Hardware
- Antenna
- Restoring Factory Default Settings on the SPEEDLAN 8500 IDU
- Upgrading the Firmware
- Chapter 4 Overview of Configurator
- Installation and Setup
- Toolbar and Menus
- Chapter 5 Configuring SPEEDLAN
- General Setup
- Interface & Advanced Interface Setup
- The Setup Buttons
- Chapter 6 Bridging Setup
- IDU Setup
- Chapter 7 Setting Up the IP Addresses (IP Host Setup)
- Part I - Quick Overview of IP Addressing
- Part II - Setting Up the IP Address
- Part III - Setting Up NAT
- Chapter 8 IP-Router Setup
- IP Routing Setup
- Chapter 9 SNMP Setup
- SNMP Setup
- Chapter 10 System Access Setup
- System Access Setup
- Chapter 11 SNMP Monitoring
- Remote Statistics
- Interface Monitor
- Ethernet-like Interface Monitor
- SectorPRC Station Entries
- 11Mb RF Interface
- SNMP Monitor
- IP Monitor
- IP/TCP/UDP Monitor
- ICMP Monitor
- Chapter 12 Tables
- System Information
- IDU Learn Table
- IP ARP Table
- IP Route Table
- IP/TCP Connection Table
- IP/UDP Listener Table
- Local IP-Address Table
- Chapter 13 Analyzing Wireless Equipment
- Select Another Device
- Analysis Polling Interval
- Wireless Link Test
- Antenna Alignment
- Glossary for Standard Data Communications
- Glossary for Standard Data Communications
- Appendixes
- Appendix A Protocols & Ethernet Addresses
- Common Ethernet Protocols
- Common Ethernet Vendor Addresses
- Common Ethernet Multicast Addresses
- Common Ethernet Broadcast Addresses
- Appendix B Startup LED Patterns
- Startup LED Patterns
SPEEDLAN 8500 Series Installation and Operation User Guide
7-4 Setting Up the IP Addresses (IP Host Setup)
In fact, IP defines five classes:
•
Class A addresses use 8 bits (1 octet) for the network portion and 24 bits (3 octets) for the
node (or host) section of the address. This provides up to 128 networks with 16.7 million
nodes for each network.
• First byte is assigned as network address
• Remaining bytes used for node addresses
• Format: network, node, node, node
• In IP address 49.22.102.70, "49" is network address and "22.102.70" is the node
address—all machines on this network have the "49" network address assigned to them
• Maximum of 224 or 16,777,216 nodes
• Class B addresses use 16 bits (two octets) for the network portion and 16 bits for the node
(or host) section of the address. This provides up to 16, 384 networks with 64,534 nodes
for each network.
• First two bytes are assigned as network address
• Remaining bytes used for node addresses
• Format: network, network, node, node
• In IP address 130.57.30.56, "130.57" is the network address, and "30.56" is the node
address
• Maximum of 216 or a total of 65,534 nodes
• Class C addresses use 24 bits (3 octets) for the network portion and 8 bits (two octets) for
the node (or host) section of the address. This provides 16.7 million networks with 256
nodes for each network.
• First three bytes are assigned as network address
• Remaining byte used for node address
• Format: network, network, network, node
• In IP address 198.21.74.102, "198.21.74" is the network address, and "102" is the
node address
• Maximum of 28 or 254 node addresses