6.7
Table Of Contents
- vSphere Storage
- Contents
- About vSphere Storage
- Introduction to Storage
- Getting Started with a Traditional Storage Model
- Overview of Using ESXi with a SAN
- Using ESXi with Fibre Channel SAN
- Configuring Fibre Channel Storage
- Configuring Fibre Channel over Ethernet
- Booting ESXi from Fibre Channel SAN
- Booting ESXi with Software FCoE
- Best Practices for Fibre Channel Storage
- Using ESXi with iSCSI SAN
- Configuring iSCSI Adapters and Storage
- ESXi iSCSI SAN Recommendations and Restrictions
- Configuring iSCSI Parameters for Adapters
- Set Up Independent Hardware iSCSI Adapters
- Configure Dependent Hardware iSCSI Adapters
- Configure the Software iSCSI Adapter
- Configure iSER Adapters
- Modify General Properties for iSCSI or iSER Adapters
- Setting Up Network for iSCSI and iSER
- Using Jumbo Frames with iSCSI
- Configuring Discovery Addresses for iSCSI Adapters
- Configuring CHAP Parameters for iSCSI Adapters
- Configuring Advanced Parameters for iSCSI
- iSCSI Session Management
- Booting from iSCSI SAN
- Best Practices for iSCSI Storage
- Managing Storage Devices
- Storage Device Characteristics
- Understanding Storage Device Naming
- Storage Rescan Operations
- Identifying Device Connectivity Problems
- Enable or Disable the Locator LED on Storage Devices
- Erase Storage Devices
- Working with Flash Devices
- About VMware vSphere Flash Read Cache
- Working with Datastores
- Types of Datastores
- Understanding VMFS Datastores
- Upgrading VMFS Datastores
- Understanding Network File System Datastores
- Creating Datastores
- Managing Duplicate VMFS Datastores
- Increasing VMFS Datastore Capacity
- Administrative Operations for Datastores
- Set Up Dynamic Disk Mirroring
- Collecting Diagnostic Information for ESXi Hosts on a Storage Device
- Checking Metadata Consistency with VOMA
- Configuring VMFS Pointer Block Cache
- Understanding Multipathing and Failover
- Failovers with Fibre Channel
- Host-Based Failover with iSCSI
- Array-Based Failover with iSCSI
- Path Failover and Virtual Machines
- Pluggable Storage Architecture and Path Management
- Viewing and Managing Paths
- Using Claim Rules
- Scheduling Queues for Virtual Machine I/Os
- Raw Device Mapping
- Storage Policy Based Management
- Virtual Machine Storage Policies
- Workflow for Virtual Machine Storage Policies
- Populating the VM Storage Policies Interface
- About Rules and Rule Sets
- Creating and Managing VM Storage Policies
- About Storage Policy Components
- Storage Policies and Virtual Machines
- Default Storage Policies
- Using Storage Providers
- Working with Virtual Volumes
- About Virtual Volumes
- Virtual Volumes Concepts
- Virtual Volumes and Storage Protocols
- Virtual Volumes Architecture
- Virtual Volumes and VMware Certificate Authority
- Snapshots and Virtual Volumes
- Before You Enable Virtual Volumes
- Configure Virtual Volumes
- Provision Virtual Machines on Virtual Volumes Datastores
- Virtual Volumes and Replication
- Best Practices for Working with vSphere Virtual Volumes
- Troubleshooting Virtual Volumes
- Filtering Virtual Machine I/O
- Storage Hardware Acceleration
- Hardware Acceleration Benefits
- Hardware Acceleration Requirements
- Hardware Acceleration Support Status
- Hardware Acceleration for Block Storage Devices
- Hardware Acceleration on NAS Devices
- Hardware Acceleration Considerations
- Thin Provisioning and Space Reclamation
- Using vmkfstools
- vmkfstools Command Syntax
- The vmkfstools Command Options
- -v Suboption
- File System Options
- Virtual Disk Options
- Supported Disk Formats
- Creating a Virtual Disk
- Initializing a Virtual Disk
- Inflating a Thin Virtual Disk
- Converting a Zeroedthick Virtual Disk to an Eagerzeroedthick Disk
- Removing Zeroed Blocks
- Deleting a Virtual Disk
- Renaming a Virtual Disk
- Cloning or Converting a Virtual Disk or RDM
- Extending a Virtual Disk
- Upgrading Virtual Disks
- Creating a Virtual Compatibility Mode Raw Device Mapping
- Creating a Physical Compatibility Mode Raw Device Mapping
- Listing Attributes of an RDM
- Displaying Virtual Disk Geometry
- Checking and Repairing Virtual Disks
- Checking Disk Chain for Consistency
- Storage Device Options
If you turn off the per file I/O scheduling model, your host reverts to a legacy scheduling mechanism. The
legacy scheduling maintains only one I/O queue for each virtual machine and storage device pair. All I/Os
between the virtual machine and its virtual disks are moved into this queue. As a result, I/Os from different
virtual disks might interfere with each other in sharing the bandwidth and affect each other's performance.
Note Do not disable per file scheduling if you have the HPP plug-in and the latency sensitive threshold
parameter configured for high-speed local devices. Disabling per file scheduling might cause
unpredictable behavior.
Procedure
1 Navigate to the host.
2 Click the Configure tab.
3 Under System, click Advanced System Settings.
4 Edit the value of the VMkernel.Boot.isPerFileSchedModelActive parameter.
Option Description
False Disable the per file scheduling mechanism.
True (default) Reenable the per file scheduling mechanism.
5 Reboot the host for the changes to take effect.
Use esxcli Commands to Enable or Disable Per File I/O Scheduling
You can use the esxcli commands to change the I/O scheduling capability. The capability is enabled by
default.
Prerequisites
Install vCLI or deploy the vSphere Management Assistant (vMA) virtual machine. See Getting Started with
vSphere Command-Line Interfaces. For troubleshooting, run esxcli commands in the ESXi Shell.
Procedure
u
To enable or disable per file I/O scheduling, run the following commands:
Option Description
esxcli system settings kernel set
-s isPerFileSchedModelActive -v
FALSE
Disable per file I/O scheduling
esxcli system settings kernel set
-s isPerFileSchedModelActive -v
TRUE
Enable per file I/O scheduling
vSphere Storage
VMware, Inc. 231