6.5.1
Table Of Contents
- vSphere Resource Management
- Contents
- About vSphere Resource Management
- Getting Started with Resource Management
- Configuring Resource Allocation Settings
- CPU Virtualization Basics
- Administering CPU Resources
- Memory Virtualization Basics
- Administering Memory Resources
- Configuring Virtual Graphics
- Managing Storage I/O Resources
- Managing Resource Pools
- Creating a DRS Cluster
- Using DRS Clusters to Manage Resources
- Creating a Datastore Cluster
- Initial Placement and Ongoing Balancing
- Storage Migration Recommendations
- Create a Datastore Cluster
- Enable and Disable Storage DRS
- Set the Automation Level for Datastore Clusters
- Setting the Aggressiveness Level for Storage DRS
- Datastore Cluster Requirements
- Adding and Removing Datastores from a Datastore Cluster
- Using Datastore Clusters to Manage Storage Resources
- Using NUMA Systems with ESXi
- Advanced Attributes
- Fault Definitions
- Virtual Machine is Pinned
- Virtual Machine not Compatible with any Host
- VM/VM DRS Rule Violated when Moving to another Host
- Host Incompatible with Virtual Machine
- Host Has Virtual Machine That Violates VM/VM DRS Rules
- Host has Insufficient Capacity for Virtual Machine
- Host in Incorrect State
- Host Has Insufficient Number of Physical CPUs for Virtual Machine
- Host has Insufficient Capacity for Each Virtual Machine CPU
- The Virtual Machine Is in vMotion
- No Active Host in Cluster
- Insufficient Resources
- Insufficient Resources to Satisfy Configured Failover Level for HA
- No Compatible Hard Affinity Host
- No Compatible Soft Affinity Host
- Soft Rule Violation Correction Disallowed
- Soft Rule Violation Correction Impact
- DRS Troubleshooting Information
- Cluster Problems
- Load Imbalance on Cluster
- Cluster is Yellow
- Cluster is Red Because of Inconsistent Resource Pool
- Cluster Is Red Because Failover Capacity Is Violated
- No Hosts are Powered Off When Total Cluster Load is Low
- Hosts Are Powered-off When Total Cluster Load Is High
- DRS Seldom or Never Performs vMotion Migrations
- Host Problems
- DRS Recommends Host Be Powered on to Increase Capacity When Total Cluster Load Is Low
- Total Cluster Load Is High
- Total Cluster Load Is Low
- DRS Does Not Evacuate a Host Requested to Enter Maintenance or Standby Mode
- DRS Does Not Move Any Virtual Machines onto a Host
- DRS Does Not Move Any Virtual Machines from a Host
- Virtual Machine Problems
- Cluster Problems
- Index
Expandable Reservations Example 2
This example shows how a resource pool with expandable reservations works.
Assume the following scenario, as shown in the gure.
n
Parent pool RP-MOM has a reservation of 6GHz and one running virtual machine VM-M1 that reserves
1GHz.
n
You create a child resource pool RP-KID with a reservation of 2GHz and with Expandable Reservation
selected.
n
You add two virtual machines, VM-K1 and VM-K2, with reservations of 2GHz each to the child
resource pool and try to power them on.
n
VM-K1 can reserve the resources directly from RP-KID (which has 2GHz).
n
No local resources are available for VM-K2, so it borrows resources from the parent resource pool, RP-
MOM. RP-MOM has 6GHz minus 1GHz (reserved by the virtual machine) minus 2GHz (reserved by
RP-KID), which leaves 3GHz unreserved. With 3GHz available, you can power on the 2GHz virtual
machine.
Figure 9‑3. Admission Control with Expandable Resource Pools: Successful Power-On
VM-K1, 2GHz VM-K2, 2GHz
2GHz
6GHz
RP-KID
VM-M1, 1GHz
RP-MOM
Now, consider another scenario with VM-M1 and VM-M2.
n
Power on two virtual machines in RP-MOM with a total reservation of 3GHz.
n
You can still power on VM-K1 in RP-KID because 2GHz are available locally.
n
When you try to power on VM-K2, RP-KID has no unreserved CPU capacity so it checks its parent. RP-
MOM has only 1GHz of unreserved capacity available (5GHz of RP-MOM are already in use—3GHz
reserved by the local virtual machines and 2GHz reserved by RP-KID). As a result, you cannot power
on VM-K2, which requires a 2GHz reservation.
Figure 9‑4. Admission Control with Expandable Resource Pools: Power-On Prevented
VM-K1, 2GHz VM-K2, 2GHz
2GHz
6GHz
RP-KID
VM-M1, 1GHz VM-M2, 2GHz
RP-MOM
Chapter 9 Managing Resource Pools
VMware, Inc. 61