7.0
Table Of Contents
- View Architecture Planning
- Contents
- View Architecture Planning
- Introduction to View
- Planning a Rich User Experience
- Feature Support Matrix for Horizon Agent
- Choosing a Display Protocol
- Using Hosted Applications
- Using View Persona Management to Retain User Data and Settings
- Using USB Devices with Remote Desktops and Applications
- Using the Real-Time Audio-Video Feature for Webcams and Microphones
- Using 3D Graphics Applications
- Streaming Multimedia to a Remote Desktop
- Printing from a Remote Desktop
- Using Single Sign-On for Logging In
- Monitors and Screen Resolution
- Managing Desktop and Application Pools from a Central Location
- Advantages of Desktop Pools
- Advantages of Application Pools
- Reducing and Managing Storage Requirements
- Application Provisioning
- Deploying Individual Applications Using an RDS Host
- Deploying Applications and System Updates with View Composer
- Deploying Applications and System Updates with Instant Clones
- Managing VMware ThinApp Applications in View Administrator
- Deploying and Managing Applications Using App Volumes
- Using Existing Processes or VMware Mirage for Application Provisioning
- Using Active Directory GPOs to Manage Users and Desktops
- Architecture Design Elements and Planning Guidelines for Remote Desktop Deployments
- Virtual Machine Requirements for Remote Desktops
- View ESXi Node
- Desktop Pools for Specific Types of Workers
- Desktop Virtual Machine Configuration
- RDS Host Virtual Machine Configuration
- vCenter Server and View Composer Virtual Machine Configuration
- View Connection Server Maximums and Virtual Machine Configuration
- vSphere Clusters
- Storage and Bandwidth Requirements
- View Building Blocks
- View Pods
- Advantages of Using Multiple vCenter Servers in a Pod
- Planning for Security Features
- Understanding Client Connections
- Choosing a User Authentication Method
- Restricting Remote Desktop Access
- Using Group Policy Settings to Secure Remote Desktops and Applications
- Using Smart Policies
- Implementing Best Practices to Secure Client Systems
- Assigning Administrator Roles
- Preparing to Use a Security Server
- Understanding View Communications Protocols
- Overview of Steps to Setting Up a View Environment
- Index
For more information about RDS host configuration and tested workloads, see the VMware Horizon 6
Reference Architecture white paper at
http://www.vmware.com/files/pdf/techpaper/VMware-Reference-Architecture-Horizon-6-View-Mirage-
Workspace.pdf.
vCenter Server and View Composer Virtual Machine Configuration
You can install vCenter Server and View Composer on the same virtual machine or on separate servers.
These servers require much more memory and processing power than a desktop virtual machine.
VMware tested having View Composer create and provision 2,000 desktops per pool using vSphere 5.1 or
later. VMware also tested having View Composer perform a recompose operation on 2,000 desktops at a
time. For these tests, vCenter Server and View Composer were installed on separate virtual machines.
Desktop pool size is limited by the following factors:
n
Each desktop pool can contain only one vSphere cluster.
n
With some setups, clusters can contain up to 32 hosts. With other setups, clusters are limited to 8 hosts.
For more information, see “vSphere Clusters,” on page 63.
n
Each CPU core has compute capacity for 8 to 10 virtual desktops.
n
The number of IP addresses available for the subnet limits the number of desktops in the pool. For
example, if your network is set up so that the subnet for the pool contains only 256 usable IP addresses,
the pool size is limited to 256 desktops. You can, however, configure multiple network labels to greatly
expand the number of IP addresses assigned to virtual machines in a pool.
Although you can install vCenter Server and View Composer on a physical machine, this example uses
separate virtual machines with the specifications listed in the following tables. The ESXi host for these
virtual machines can be part of a VMware HA cluster to guard against physical server failures.
This example assumes that you are using View with vSphere 5.1 or later and vCenter Server 5.1 or later.
IMPORTANT This example also assumes that View Composer and vCenter Server are installed on separate
virtual machines.
Table 4‑4. vCenter Server Virtual Machine Example
Item
Example for a vCenter Server
That Manages 10,000 Desktops
Example for a vCenter Server That
Manages 2,000 Desktops
Operating system 64-bit Windows Server 2008 R2
Enterprise
64-bit Windows Server 2008 R2
Enterprise
RAM 48GB 10-24GB, depending on vSphere version
Virtual CPU 16 2 -8, depending on vSphere version
System disk capacity 180GB 40GB
Virtual SCSI adapter type LSI Logic SAS (the default for
Windows Server 2008)
LSI Logic SAS (the default for Windows
Server 2008)
Virtual network adapter E1000 (the default) VMXNET 3 (though E1000, the default, is
fine too)
Maximum concurrent vCenter
provisioning operations
20 20
Maximum concurrent power
operations
50 50
View Architecture Planning
60 VMware, Inc.