5.2
Table Of Contents
- VMware Horizon View Architecture Planning
- Contents
- VMware Horizon View Architecture Planning
- Introduction to Horizon View
- Planning a Rich User Experience
- Feature Support Matrix
- Choosing a Display Protocol
- Using View Persona Management to Retain User Data and Settings
- Benefits of Using View Desktops in Local Mode
- Accessing USB Devices Connected to a Local Computer
- Printing from a View Desktop
- Streaming Multimedia to a View Desktop
- Using Single Sign-On for Logging In to a View Desktop
- Using Multiple Monitors with a View Desktop
- Managing Desktop Pools from a Central Location
- Architecture Design Elements and Planning Guidelines
- Virtual Machine Requirements
- Horizon View ESX/ESXi Node
- Desktop Pools for Specific Types of Workers
- Desktop Virtual Machine Configuration
- vCenter Server and View Composer Virtual Machine Configuration
- View Connection Server Maximums and Virtual Machine Configuration
- View Transfer Server Virtual Machine Configuration and Storage
- vSphere Clusters
- Storage and Bandwidth Requirements
- Horizon View Building Blocks
- Horizon View Pods
- Advantages of Using Multiple vCenter Servers in a Pod
- Planning for Security Features
- Understanding Client Connections
- Choosing a User Authentication Method
- Restricting View Desktop Access
- Using Group Policy Settings to Secure View Desktops
- Implementing Best Practices to Secure Client Systems
- Assigning Administrator Roles
- Preparing to Use a Security Server
- Understanding Horizon View Communications Protocols
- Overview of Steps to Setting Up a Horizon View Environment
- Index
Horizon View ESX/ESXi Node
A node is a single VMware ESX/ESXi host that hosts virtual machine desktops in a Horizon View deployment.
Horizon View is most cost-effective when you maximize the consolidation ratio, which is the number of
desktops hosted on an ESX/ESXi host. Although many factors affect server selection, if you are optimizing
strictly for acquisition price, you must find server configurations that have an appropriate balance of processing
power and memory.
There is no substitute for measuring performance under actual, real world scenarios, such as in a pilot, to
determine an appropriate consolidation ratio for your environment and hardware configuration.
Consolidation ratios can vary significantly, based on usage patterns and environmental factors. Use the
following guidelines:
n
As a general framework, consider compute capacity in terms of 8 to 10 virtual desktops per CPU core. For
information about calculating CPU requirements for each virtual machine, see “Estimating CPU
Requirements for Virtual Desktops,” on page 37.
n
Think of memory capacity in terms of virtual desktop RAM, host RAM, and overcommit ratio. Although
you can have between 8 and 10 virtual desktops per CPU core, if virtual desktops have 1GB or more of
RAM, you must also carefully consider physical RAM requirements. For information about calculating
the amount of RAM required per virtual machine, see “Estimating Memory Requirements for Virtual
Desktops,” on page 35.
Note that physical RAM costs are not linear and that in some situations, it can be cost-effective to purchase
more smaller servers that do not use expensive DIMM chips. In other cases, rack density, storage
connectivity, manageability and other considerations can make minimizing the number of servers in a
deployment a better choice.
n
Note that in Horizon View 5.2 and later, the View Storage Accelerator feature is turned on by default,
which allows ESXi 5.0 and later hosts to cache common virtual machine disk data. View Storage
Accelerator can improve performance and reduce the need for extra storage I/O bandwidth to manage
boot storms and anti-virus scanning I/O storms. This feature requires 1GB of RAM per ESXi host.
n
Finally, consider cluster requirements and any failover requirements. For more information, see
“Determining Requirements for High Availability,” on page 48.
For information about specifications of ESX/ESXi hosts in vSphere, see the VMware vSphere Configuration
Maximums document.
Chapter 4 Architecture Design Elements and Planning Guidelines
VMware, Inc. 39