Datasheet
Document Number: 28321 For technical questions contact: aluminumcaps1@vishay.com
www.vishay.com
Revision: 16-Nov-05 169
136 RVI
Aluminum Capacitors
Radial Very Low Impedance
Vishay BCcomponents
IMPEDANCE (Z)
Fig.9 Typical multiplier of impedance as a function
of ambient temperature.
020-40 -20 40 60 80 100
T
amb
(°C)
-60
10
2
10
120
Z
1
10
-1
Z
0
3
2
1
Curve 1: 10 V.
Curve 2: 50 V.
Curve 3: 63 V.
Z
0
= typical impedance at 20 °C, 100 kHz.
10
5
10
4
10
3
10
2
10
10
2
10
1
f (Hz)
Z
(W)
10
-1
10
-2
5
6
4
3
2
1
Fig.10 Typical impedance as a function of frequency.
UR = 10 and 16 V.
Curve 1: 470 μF, 16 V; ∅10 × 16 mm.
Curve 2: 680 μF, 10 V; ∅10 × 16 mm.
Curve 3: 1000 μF, 10 V; ∅10 × 20 mm.
Curve 4: 2200 μF, 10 V; ∅12.5 × 25 mm.
Curve 5: 4700 μF, 16 V; ∅16 × 35 mm.
Curve 6: 10000 μF, 10 V; ∅18 × 35 mm.
T
amb
=20°C.
Fig.11 Typical impedance as a function of frequency.
10
5
10
4
10
3
10
2
10
10
2
10
1
f (Hz)
Z
(W)
10
1
10
2
1
2
3
4
6
7
8
9
5
UR = 25 and 35 V.
Curve 1: 220 μF, 25 V; ∅10 × 12 mm.
Curve 2: 220 μF, 35 V; ∅10 × 16 mm.
Curve 3: 330 μF, 35 V; ∅10 × 20 mm.
Curve 4: 470 μF, 25 V; ∅10 × 20 mm.
Curve 5: 470 μF, 35 V; ∅12.5 × 20 mm.
Curve 6: 1000 μF, 25 V; ∅12.5 × 25 mm.
Curve 7: 1200 μF, 35 V; ∅16 × 25 mm.
Curve 8: 2200 μF, 35 V; ∅16 × 35 mm.
Curve 9: 3300 μF, 25 V; ∅16 × 35 mm.
T
amb
=20°C.
Fig.12 Typical impedance as a function of frequency.
UR = 50 V.
Curve 1: 100 μF, 50 V; ∅10 × 12 mm.
Curve 2: 470 μF, 50 V; ∅12.5 × 25 mm.
Curve 3: 680 μF, 50 V; ∅16 × 20 mm.
Curve 4: 1000 μF, 50 V; ∅16 × 31 mm.
Curve 5: 2200 μF, 50 V; ∅18 × 35 mm.
10
5
10
4
10
3
10
2
10
10
2
10
1
f (Hz)
Z
(W)
10
-1
10
-2
1
2
3
4
5
T
amb
=20°C.