Specifications
Table Of Contents
- iXon Ultra
- SAFETY AND WARNINGS INFORMATION
- SAFETY AND WARNINGS SYMBOLS
- MANUAL HANDLING
- SHIPPING AND STORAGE PRECAUTIONS
- SECTION 1 - INTRODUCTION TO IXON ULTRA HARDWARE
- 1.1 - TECHNICAL SUPPORT
- 1.2 - DISCLAIMER
- 1.3 - TRADEMARKS AND PATENT INFORMATION
- 1.4 - COMPONENTS
- 1.4.1 - Camera description
- 1.4.2 - Camera Power Supply Unit
- 1.4.3 - SOFTWARE
- 1.5 - SPECIFICATIONS
- 1.6 - ACCESSORIES
- 1.7 - SAFETY PRECAUTIONS AND MAINTENANCE
- 1.7.1 - Care of the camera
- 1.7.2 - Regular checks
- 1.7.3 - Annual electrical safety checks
- 1.7.4 - Replacement parts
- 1.7.5 - Fuse replacement
- 1.7.6 - Working with electronics
- 1.7.7 - Condensation
- 1.7.8 - Dew Point graph
- 1.7.9 - EM Gain ageing
- 1.7.10 - Minimizing particulate contamination
- 2.1 - INSTALLING THE HARDWARE
- 2.1.1- PC requirements
- 2.2 - INSTALLING ANDOR SOLIS SOFTWARE - WINDOWS O/S(XP/VISTA/SEVEN)
- 2.3 - NEW HARDWARE WIZARD
- 2.5 - WATER PIPE CONNECTORS
- 2.6 - MOUNTING POSTS
- 2.7 - COOLING
- 2.8 - START-UP DIALOG
- 3.1 - EMCCD OPERATION
- 3.1.1 - Structure of an EMCCD
- 3.1.2 - EM Gain & Read Noise
- 3.1.3 - EM Gain ON vs EM Gain OFF
- 3.1.4 - Multiplicative Noise Factor and Photon Counting
- 3.1.5 - EM Gain dependence and stability
- 3.1.6 - RealGain: Real and Linear gain
- 3.1.7 - EM Gain Ageing: What causes it and how is it countered?
- 3.1.8 - Gain and signal restrictions
- 3.1.9 - EMCAL
- 3.2 - COOLING
- 3.2.1 - Cooling options
- 3.2.2 - Heat generated in the EMCCD
- 3.2.3 Heatsink “hot side“ temperature
- 3.2.4 - Fan settings
- 3.3 - SENSOR READOUT OPTIMIZATION
- 3.3.1 - Sensor Pre-amp options
- 3.3.2 - Variable Horizontal Readout Rate
- 3.3.3 - Variable Vertical Shift Speed
- 3.3.4 - Output amplifier selection
- 3.3.5 - Baseline Optimization
- 3.3.5.1 - Baseline Clamp
- 3.3.6 - Binning and Sub Image options
- 3.4 - ACQUISITION OPTIONS
- 3.4.1 - Capture Sequence in Frame Transfer (FT) Mode
- 3.4.1.1 - Points to consider when using FT Mode
- 3.4.2 - Capture Sequence in Non-Frame Transfer Mode (NFT) with an FT EMCCD
- 3.4.2.1 - Points to note about using an FT EMCCD as a standard EMCCD
- 3.4.3 - Capture Sequence for Fast Kinetics (FK) with an FT EMCCD
- 3.4.3.1 - Points to consider when using Fast Kinetics mode
- 3.4.4 - Keep Clean Cycles
- 3.5 - TRIGGERING OPTIONS
- 3.5.1 - Triggering options in Frame Transfer (FT) mode
- 3.5.1.1 - Internal Triggering (FT)
- 3.5.1.2 - External Triggering (FT)
- 3.5.1.3 - External Exposure (FT)
- 3.5.2 - Triggering options in Non-Frame Transfer (NFT) mode
- 3.5.2.1 - Internal (NFT)
- 3.5.2.2 - External & Fast External (NFT)
- 3.5.2.3 - External Exposure (NFT)
- 3.5.2.4 - Software trigger (NFT)
- 3.5.3 - Trigger options in Fast Kinetics (FK) mode
- 3.5.3.1 - Internal (FK)
- 3.5.3.2 - External (FK)
- 3.5.3.3 - External Start (FK)
- 3.6 - SHUTTERING
- 3.7 - COUNT CONVERT
- 3.8 - OPTACQUIRE
- 3.8.1 - OptAcquire modes
- 3.9 - PUSHING FRAME RATES WITH CROPPED SENSOR MODE
- 3.9.1 - Cropped Sensor Mode Frame Rates
- 3.10 - ADVANCED PHOTON COUNTING IN EMCCDs
- 3.10.1 - Photon Counting by Post-Process
- 3.11 - SPURIOUS NOISE FILTER
- 4.1 - EMCCD TECHNOLOGY
- 4.1.1 - What is an Electron Multiplying CCD?
- 4.1.2 - Does EMCCD technology eliminate Read Out Noise?
- 4.1.3 - How sensitive are EMCCDs?
- 4.1.4 - What applications are EMCCDs suitable for?
- 4.1.5 - What is Andor Technology's experience with EMCCDs?
- 4.2 - EMCCD SENSOR
- 4.3 - VACUUM HOUSING
- 4.3.1 - Thermoelectric cooler
- 4.4 – USB 2.0 INTERFACE
- 4.5 - OUTGASSING
- 4.6 - EXTERNAL I/O
- 4.7 - SIGNAL DIAGRAMS
- 4.8 - CAMERALINK
- SECTION 5: TROUBLESHOOTING
- 5.1 - UNIT DOES NOT SWITCH ON
- 5.2 - SUPPORT DEVICE NOT RECOGNISED WHEN PLUGGED INTO PC
- 5.3 - TEMPERATURE TRIP ALARM SOUNDS (CONTINUOUS TONE)
- 5.4 - CAMERA HIGH FIFO FILL ALARM
- 5.5 - USE OF MULTIPLE HIGH SPEED USB 2.0 I/O ON ONE CAMERA
- A.1 - GLOSSARY
- A.1.1 - Readout sequence of an EMCCD
- A.1.2 - Accumulation
- A.1.3 - Acquisition
- A.1.4 - A/D Conversion
- A.1.5 - Background
- A.1.6 - Binning
- A.1.7 - Counts
- A.1.8 - Dark Signal
- A.1.9 - Detection Limit
- A.1.10 - Exposure Time
- A.1.11 - Frame Transfer
- A.1.12 - NOISE
- A.1.12.1 - Pixel Noise
- A.1.12.1.1 - Readout Noise
- A.1.12.1.2 - Shot Noise
- A.1.12.1.2.A - Shot Noise from the Signal
- A.1.12.1.2.B - Shot Noise from the Dark Signal
- A.1.12.1.3 - Calculation of Total Pixel Noise
- A.1.12.2 - Fixed Pattern Noise
- A.1.13 - Quantum Efficiency/Spectral Response
- A.1.14 - Readout
- A.1.15 - Saturation
- A.1.16 - Scans (Keep Clean and Acquired)
- A.1.17 - Shift Register
- A.1.18 - Signal To Noise Ratio
- B - MECHANICAL DIMENSIONS
- C - DECLARATION OF CONFORMITY
- D - HARDWARE AND SOFTWARE WARRANTY SERVICE
- D.1 - SERVICE DESCRIPTION
- D.2 - Access to Service
- D.3 - Hardware Remediation
- D.4 - Software Remediation
- E - THE WASTE ELECTRONIC AND ELECTRICAL EQUIPMENT REGULATIONS 2006 (WEEE)

Version 1.1 rev Jan 2013
Page 92
iXon Ultra
Hardware
4.4 – USB 2.0 INTERFACE
USB 2.0 is a convenient interface standard for use with a Scientic camera, as it is designed to be “plug and play” and
is available on all modern PCs, including Laptops and tablet PCs. Most modern desktop PCs will be able to support at
least two iXon Ultras running at full Frame rate.
The underlying system software of the PC is responsible for automatically assigning resources and usually performs this
properly – some conicts can arise when resources are not released properly by third party USB drivers. Please contact
Andor on how to resolve this conict if problems are encountered.
Most PCs are tted with two EHCI (Enhanced Host Controller Interfaces) and are therefore able to support two devices
running USB 2.0 at “high speed”. USB 3.0 PCI-e interface cards can be used if more than two high speed USB 2.0
interfaces are required simultaneously (USB 2.0 interface cards generally use a PCI interface standard and do not offer
the adequate bandwidth).
On some desktop PCs, the USB connectors on the front panel are implemented badly and will fail to connect to any
USB 2.0 high speed device. If this occurs, use a rear panel USB connector as these are mounted directly on the
motherboard.
Figure 40: Camera Architecture
If the PC is busy when transfers are ongoing – a buffer memory is available within the camera – this is usually at 2-3%
ll. The camera will issue a warning if the processing load on the PC is excessive and it is starting to impact on the
memory ll of the camera.
The iXon Ultra automatically switches from 16 bit to 32 bit transfer mode – when running with real time count convert
active for example. This happens seamlessly under software control, and is needed because, in count convert mode,
the number of electrons/photons detected can be > 2^16.










