Specifications
Table Of Contents
- iXon Ultra
- SAFETY AND WARNINGS INFORMATION
- SAFETY AND WARNINGS SYMBOLS
- MANUAL HANDLING
- SHIPPING AND STORAGE PRECAUTIONS
- SECTION 1 - INTRODUCTION TO IXON ULTRA HARDWARE
- 1.1 - TECHNICAL SUPPORT
- 1.2 - DISCLAIMER
- 1.3 - TRADEMARKS AND PATENT INFORMATION
- 1.4 - COMPONENTS
- 1.4.1 - Camera description
- 1.4.2 - Camera Power Supply Unit
- 1.4.3 - SOFTWARE
- 1.5 - SPECIFICATIONS
- 1.6 - ACCESSORIES
- 1.7 - SAFETY PRECAUTIONS AND MAINTENANCE
- 1.7.1 - Care of the camera
- 1.7.2 - Regular checks
- 1.7.3 - Annual electrical safety checks
- 1.7.4 - Replacement parts
- 1.7.5 - Fuse replacement
- 1.7.6 - Working with electronics
- 1.7.7 - Condensation
- 1.7.8 - Dew Point graph
- 1.7.9 - EM Gain ageing
- 1.7.10 - Minimizing particulate contamination
- 2.1 - INSTALLING THE HARDWARE
- 2.1.1- PC requirements
- 2.2 - INSTALLING ANDOR SOLIS SOFTWARE - WINDOWS O/S(XP/VISTA/SEVEN)
- 2.3 - NEW HARDWARE WIZARD
- 2.5 - WATER PIPE CONNECTORS
- 2.6 - MOUNTING POSTS
- 2.7 - COOLING
- 2.8 - START-UP DIALOG
- 3.1 - EMCCD OPERATION
- 3.1.1 - Structure of an EMCCD
- 3.1.2 - EM Gain & Read Noise
- 3.1.3 - EM Gain ON vs EM Gain OFF
- 3.1.4 - Multiplicative Noise Factor and Photon Counting
- 3.1.5 - EM Gain dependence and stability
- 3.1.6 - RealGain: Real and Linear gain
- 3.1.7 - EM Gain Ageing: What causes it and how is it countered?
- 3.1.8 - Gain and signal restrictions
- 3.1.9 - EMCAL
- 3.2 - COOLING
- 3.2.1 - Cooling options
- 3.2.2 - Heat generated in the EMCCD
- 3.2.3 Heatsink “hot side“ temperature
- 3.2.4 - Fan settings
- 3.3 - SENSOR READOUT OPTIMIZATION
- 3.3.1 - Sensor Pre-amp options
- 3.3.2 - Variable Horizontal Readout Rate
- 3.3.3 - Variable Vertical Shift Speed
- 3.3.4 - Output amplifier selection
- 3.3.5 - Baseline Optimization
- 3.3.5.1 - Baseline Clamp
- 3.3.6 - Binning and Sub Image options
- 3.4 - ACQUISITION OPTIONS
- 3.4.1 - Capture Sequence in Frame Transfer (FT) Mode
- 3.4.1.1 - Points to consider when using FT Mode
- 3.4.2 - Capture Sequence in Non-Frame Transfer Mode (NFT) with an FT EMCCD
- 3.4.2.1 - Points to note about using an FT EMCCD as a standard EMCCD
- 3.4.3 - Capture Sequence for Fast Kinetics (FK) with an FT EMCCD
- 3.4.3.1 - Points to consider when using Fast Kinetics mode
- 3.4.4 - Keep Clean Cycles
- 3.5 - TRIGGERING OPTIONS
- 3.5.1 - Triggering options in Frame Transfer (FT) mode
- 3.5.1.1 - Internal Triggering (FT)
- 3.5.1.2 - External Triggering (FT)
- 3.5.1.3 - External Exposure (FT)
- 3.5.2 - Triggering options in Non-Frame Transfer (NFT) mode
- 3.5.2.1 - Internal (NFT)
- 3.5.2.2 - External & Fast External (NFT)
- 3.5.2.3 - External Exposure (NFT)
- 3.5.2.4 - Software trigger (NFT)
- 3.5.3 - Trigger options in Fast Kinetics (FK) mode
- 3.5.3.1 - Internal (FK)
- 3.5.3.2 - External (FK)
- 3.5.3.3 - External Start (FK)
- 3.6 - SHUTTERING
- 3.7 - COUNT CONVERT
- 3.8 - OPTACQUIRE
- 3.8.1 - OptAcquire modes
- 3.9 - PUSHING FRAME RATES WITH CROPPED SENSOR MODE
- 3.9.1 - Cropped Sensor Mode Frame Rates
- 3.10 - ADVANCED PHOTON COUNTING IN EMCCDs
- 3.10.1 - Photon Counting by Post-Process
- 3.11 - SPURIOUS NOISE FILTER
- 4.1 - EMCCD TECHNOLOGY
- 4.1.1 - What is an Electron Multiplying CCD?
- 4.1.2 - Does EMCCD technology eliminate Read Out Noise?
- 4.1.3 - How sensitive are EMCCDs?
- 4.1.4 - What applications are EMCCDs suitable for?
- 4.1.5 - What is Andor Technology's experience with EMCCDs?
- 4.2 - EMCCD SENSOR
- 4.3 - VACUUM HOUSING
- 4.3.1 - Thermoelectric cooler
- 4.4 – USB 2.0 INTERFACE
- 4.5 - OUTGASSING
- 4.6 - EXTERNAL I/O
- 4.7 - SIGNAL DIAGRAMS
- 4.8 - CAMERALINK
- SECTION 5: TROUBLESHOOTING
- 5.1 - UNIT DOES NOT SWITCH ON
- 5.2 - SUPPORT DEVICE NOT RECOGNISED WHEN PLUGGED INTO PC
- 5.3 - TEMPERATURE TRIP ALARM SOUNDS (CONTINUOUS TONE)
- 5.4 - CAMERA HIGH FIFO FILL ALARM
- 5.5 - USE OF MULTIPLE HIGH SPEED USB 2.0 I/O ON ONE CAMERA
- A.1 - GLOSSARY
- A.1.1 - Readout sequence of an EMCCD
- A.1.2 - Accumulation
- A.1.3 - Acquisition
- A.1.4 - A/D Conversion
- A.1.5 - Background
- A.1.6 - Binning
- A.1.7 - Counts
- A.1.8 - Dark Signal
- A.1.9 - Detection Limit
- A.1.10 - Exposure Time
- A.1.11 - Frame Transfer
- A.1.12 - NOISE
- A.1.12.1 - Pixel Noise
- A.1.12.1.1 - Readout Noise
- A.1.12.1.2 - Shot Noise
- A.1.12.1.2.A - Shot Noise from the Signal
- A.1.12.1.2.B - Shot Noise from the Dark Signal
- A.1.12.1.3 - Calculation of Total Pixel Noise
- A.1.12.2 - Fixed Pattern Noise
- A.1.13 - Quantum Efficiency/Spectral Response
- A.1.14 - Readout
- A.1.15 - Saturation
- A.1.16 - Scans (Keep Clean and Acquired)
- A.1.17 - Shift Register
- A.1.18 - Signal To Noise Ratio
- B - MECHANICAL DIMENSIONS
- C - DECLARATION OF CONFORMITY
- D - HARDWARE AND SOFTWARE WARRANTY SERVICE
- D.1 - SERVICE DESCRIPTION
- D.2 - Access to Service
- D.3 - Hardware Remediation
- D.4 - Software Remediation
- E - THE WASTE ELECTRONIC AND ELECTRICAL EQUIPMENT REGULATIONS 2006 (WEEE)

Version 1.1 rev Jan 2013
Page 107
iXon Ultra
Appendix
D - HARDWARE AND SOFTWARE WARRANTY SERVICE
D.1 - SERVICE DESCRIPTION
D.1.1 The Andor Repair service provides a repair and return service for defective products supplied by Andor under a
supply contract. Using this service, the original ,defective part sent in by the Customer will be, where possible,
returned after repair or will be replaced. Any warranty obligation contained in an Andor supply contract will be
carried out in accordance with this Repair Service.
D.1.2 In order to be eligible for warranty repair or replacement, the equipment must be suffering a defect which meets
the criteria set out in the supply contract and must be within its specied warranty period. Services such as
upgrades to Hardware and Software are excluded from the scope of this service description and should be
ordered separately.
D.2 - Access to Service
D.2.1 A Customer who has purchased their product via a reseller or third party and who believes they have a warranty
defect should in the rst instance contact a representative of their seller’s product support team. Customers who
have bought products directly from Andor can access the Service Desk at www.andor.com/contact_us/support_
request
D.2.2 The Customer should indicate that they are pursuing a warranty claim and specify the equipment type and the
contract under which it was supplied. The Service Desk representative will then work with the Customer to
establish the nature of the defect and to determine whether the reported defect is one which meets the criteria
under the supply contract for warranty remediation. This process will comprise question and answer between
Service Desk and Customer and the Service Desk operative may, at their sole discretion, ask the Customer to
perform some basic diagnostic actions in relation to the problem item.










