Integration Manual
Table Of Contents
- Document information
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC)
- 1.5.1.1 VCC supply requirements
- 1.5.1.2 VCC current consumption in LTE connected mode
- 1.5.1.3 VCC current consumption in 2G connected mode
- 1.5.1.4 VCC current consumption in ultra low power deep sleep mode
- 1.5.1.5 VCC current consumption in low power idle mode
- 1.5.1.6 VCC current consumption in active mode (PSM / low power disabled)
- 1.5.2 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC)
- 1.6 System function interfaces
- 1.7 Antenna interfaces
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 GNSS peripheral input output
- 1.13 Reserved pins (RSVD)
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using LDO linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary battery
- 2.2.1.6 Guidelines for external battery charging circuit
- 2.2.1.7 Guidelines for external charging and power path management circuit
- 2.2.1.8 Guidelines for particular VCC supply circuit design for SARA-R4x2
- 2.2.1.9 Guidelines for removing VCC supply
- 2.2.1.10 Additional guidelines for VCC supply circuit design
- 2.2.1.11 Guidelines for VCC supply layout design
- 2.2.1.12 Guidelines for grounding layout design
- 2.2.2 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interfaces
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio
- 2.8 General Purpose Input/Output
- 2.9 GNSS peripheral input output
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 Module footprint and paste mask
- 2.13 Thermal guidelines
- 2.14 Schematic for SARA-R4 series module integration
- 2.15 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science, Economic Development Canada notice
- 4.4 European Conformance CE mark
- 4.5 National Communication Commission Taiwan
- 4.6 ANATEL Brazil
- 4.7 Australian Conformance
- 4.8 GITEKI Japan
- 4.9 KC South Korea
- 5 Product testing
- Appendix
- A Migration between SARA modules
- B Glossary
- Related documentation
- Revision history
- Contact
SARA-R4 series - System integration manual
UBX-16029218 - R20 Design-in Page 86 of 129
C1-Public
Table 39: UART application circuit components with partial V.24 link (6-wire) in DTE/DCE serial communication (3.0 V DTE)
Providing the TXD, RXD, RTS and CTS lines only
40
If the functionality of the DSR, DCD, RI and DTR lines is not required, or the lines are not available:
• Connect the module DTR input to GND using a 0 series resistor, since it may be useful to set
DTR active if not specifically handled, in particular to have URCs presented over the UART
interface (see the SARA-R4 series AT commands manual [2] for the &D, S0, +CNMI AT commands)
• Leave DSR, DCD and RI lines of the module floating
If RS-232 compatible signal levels are needed, the Maxim MAX13234E voltage level translator can be
used. This chip translates voltage levels from 1.8 V (module side) to the RS-232 standard. If a 1.8 V
Application Processor is used, the circuit should be implemented as described in Figure 55.
TxD
Application Processor
(1.8V DTE)
RxD
RTS
CTS
DTR
DSR
RI
DCD
GND
SARA-R4 series
(1.8V DCE)
12
TXD
9
DTR
13
RXD
10
RTS
11
CTS
6
DSR
7
RI
8
DCD
GND
0Ω
TP
0Ω
TP
0Ω
TP
0Ω
TP
Figure 55: UART interface application circuit with partial V.24 link (5-wire) in the DTE/DCE serial communication (1.8V DTE)
If a 3.0 V Application Processor (DTE) is used, then it is recommended to connect the 1.8 V UART
interface of the module (DCE) by means of appropriate unidirectional voltage translators using the
module V_INT output as 1.8 V supply for the voltage translators on the module side, as in Figure 56.
4
V_INT
TxD
Application Processor
(3.0V DTE)
RxD
RTS
CTS
DTR
DSR
RI
DCD
GND
SARA-R4 series
(1.8V DCE)
12
TXD
9
DTR
13
RXD
10
RTS
11
CTS
6
DSR
7
RI
8
DCD
GND
1V8
B1 A1
GND
U1
B3A3
VCCBVCCA
Unidirectional
Voltage Translator
C1
C2
3V0
DIR3
DIR2 OE
DIR1
VCC
B2 A2
B4A4
DIR4
TP
0Ω
TP
0Ω
TP
0Ω
TP
0Ω
TP
Figure 56: UART interface application circuit with a partial V.24 link (5-wire) in DTE/DCE serial communication (3.0 V DTE)
Reference
Description
Part Number - Manufacturer
C1, C2
100 nF Capacitor Ceramic X7R 0402 10% 16 V
GRM155R61A104KA01 - Murata
U1
Unidirectional Voltage Translator
SN74AVC4T774
41
- Texas Instruments
Table 40: UART application circuit components with a partial V.24 link (5-wire) in DTE/DCE serial communication (3.0 V DTE)
40
Flow control is not supported by SARA-R410M-01B and SARA-R410M-02B-00 product versions. The RTS input must be set low to
communicate over UART on SARA-R410M-01B product version. The DTR input must be set low to have URCs presented over UART on
SARA-R410M-01B and SARA-R41xM-x2B product versions.
41
Voltage translator providing partial power down feature so that the DTE 3 V supply can be also ramped up before V_INT 1.8 V supply