Integration Manual
Table Of Contents
- Document information
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC)
- 1.5.1.1 VCC supply requirements
- 1.5.1.2 VCC current consumption in LTE connected mode
- 1.5.1.3 VCC current consumption in 2G connected mode
- 1.5.1.4 VCC current consumption in ultra low power deep sleep mode
- 1.5.1.5 VCC current consumption in low power idle mode
- 1.5.1.6 VCC current consumption in active mode (PSM / low power disabled)
- 1.5.2 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC)
- 1.6 System function interfaces
- 1.7 Antenna interfaces
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 GNSS peripheral input output
- 1.13 Reserved pins (RSVD)
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using LDO linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary battery
- 2.2.1.6 Guidelines for external battery charging circuit
- 2.2.1.7 Guidelines for external charging and power path management circuit
- 2.2.1.8 Guidelines for particular VCC supply circuit design for SARA-R4x2
- 2.2.1.9 Guidelines for removing VCC supply
- 2.2.1.10 Additional guidelines for VCC supply circuit design
- 2.2.1.11 Guidelines for VCC supply layout design
- 2.2.1.12 Guidelines for grounding layout design
- 2.2.2 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interfaces
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio
- 2.8 General Purpose Input/Output
- 2.9 GNSS peripheral input output
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 Module footprint and paste mask
- 2.13 Thermal guidelines
- 2.14 Schematic for SARA-R4 series module integration
- 2.15 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science, Economic Development Canada notice
- 4.4 European Conformance CE mark
- 4.5 National Communication Commission Taiwan
- 4.6 ANATEL Brazil
- 4.7 Australian Conformance
- 4.8 GITEKI Japan
- 4.9 KC South Korea
- 5 Product testing
- Appendix
- A Migration between SARA modules
- B Glossary
- Related documentation
- Revision history
- Contact
SARA-R4 series - System integration manual
UBX-16029218 - R20 Design-in Page 82 of 129
C1-Public
• Connect one pin of the normally-open mechanical switch integrated in the SIM connector (as the
SW2 pin in Figure 50) to the GPIO5 input pin, providing a weak pull-down resistor (e.g. 470 k, as
R2 in Figure 50).
• Connect the other pin of the normally-open mechanical switch integrated in the SIM connector
(SW1 pin in Figure 50) to V_INT 1.8 V supply output by means of a strong pull-up resistor (e.g.
1 k, as R1 in Figure 50)
• Provide a 100 nF bypass capacitor (e.g. Murata GRM155R71C104K) at the SIM supply line (VSIM),
close to the related pad of the SIM connector, to prevent digital noise.
• Provide a bypass capacitor of about 22 pF to 47 pF (e.g. Murata GRM1555C1H470J) on each SIM
line (VSIM, SIM_CLK, SIM_IO, SIM_RST), very close to each related pad of the SIM connector, to
prevent RF coupling especially in case the RF antenna is placed closer than 10 - 30 cm from the
SIM card holder.
• Provide a low capacitance (i.e. less than 10 pF) ESD protection (e.g. Tyco Electronics
PESD0402-140) on each externally accessible SIM line, close to each related pad of the SIM
connector. The ESD sensitivity rating of SIM interface pins is 1 kV (HBM according to
JESD22-A114), so that, according to the EMC/ESD requirements of the custom application,
higher protection level can be required if the lines are externally accessible.
• Limit capacitance and series resistance on each SIM signal to match the requirements for the SIM
interface (18.7 ns = maximum rise time on SIM_CLK, 1.0 µs = maximum rise time on SIM_IO and
SIM_RST).
SARA-R4 series
41
VSIM
39
SIM_IO
38
SIM_CLK
40
SIM_RST
4
V_INT
42
GPIO5
SIM CARD
HOLDER
C
5
C
6
C
7
C
1
C
2
C
3
SIM Card
Bottom View
(contacts side)
C1
VPP (C6)
VCC (C1)
IO (C7)
CLK (C3)
RST (C2)
GND (C5)
C2 C3 C5
J1
C4
SW1
SW2
D1 D2 D3 D4 D5 D6
R2
R1
C
8
C
4
TP
Figure 50: Application circuit for the connection to a single removable SIM card, with SIM detection implemented
Reference
Description
Part Number - Manufacturer
C1, C2, C3, C4
47 pF Capacitor Ceramic C0G 0402 5% 50 V
GRM1555C1H470JA01 - Murata
C5
100 nF Capacitor Ceramic X7R 0402 10% 16 V
GRM155R71C104KA01 - Murata
D1 – D6
Very Low Capacitance ESD Protection
PESD0402-140 - Tyco Electronics
R1
1 k Resistor 0402 5% 0.1 W
RC0402JR-071KL - Yageo Phycomp
R2
470 k Resistor 0402 5% 0.1 W
RC0402JR-07470KL- Yageo Phycomp
J1
SIM Card Holder
6 + 2 positions, with card presence switch
Various Manufacturers,
CCM03-3013LFT R102 - C&K Components
Table 37: Example of components for the connection to a single removable SIM card, with SIM detection implemented