Integration Manual
Table Of Contents
- Document information
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC)
- 1.5.1.1 VCC supply requirements
- 1.5.1.2 VCC current consumption in LTE connected mode
- 1.5.1.3 VCC current consumption in 2G connected mode
- 1.5.1.4 VCC current consumption in ultra low power deep sleep mode
- 1.5.1.5 VCC current consumption in low power idle mode
- 1.5.1.6 VCC current consumption in active mode (PSM / low power disabled)
- 1.5.2 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC)
- 1.6 System function interfaces
- 1.7 Antenna interfaces
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 GNSS peripheral input output
- 1.13 Reserved pins (RSVD)
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using LDO linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary battery
- 2.2.1.6 Guidelines for external battery charging circuit
- 2.2.1.7 Guidelines for external charging and power path management circuit
- 2.2.1.8 Guidelines for particular VCC supply circuit design for SARA-R4x2
- 2.2.1.9 Guidelines for removing VCC supply
- 2.2.1.10 Additional guidelines for VCC supply circuit design
- 2.2.1.11 Guidelines for VCC supply layout design
- 2.2.1.12 Guidelines for grounding layout design
- 2.2.2 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interfaces
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio
- 2.8 General Purpose Input/Output
- 2.9 GNSS peripheral input output
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 Module footprint and paste mask
- 2.13 Thermal guidelines
- 2.14 Schematic for SARA-R4 series module integration
- 2.15 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science, Economic Development Canada notice
- 4.4 European Conformance CE mark
- 4.5 National Communication Commission Taiwan
- 4.6 ANATEL Brazil
- 4.7 Australian Conformance
- 4.8 GITEKI Japan
- 4.9 KC South Korea
- 5 Product testing
- Appendix
- A Migration between SARA modules
- B Glossary
- Related documentation
- Revision history
- Contact
SARA-R4 series - System integration manual
UBX-16029218 - R20 Design-in Page 71 of 129
C1-Public
Table 27 lists examples of LNA suitable for the GNSS RF input of SARA-R422M8S modules.
Manufacturer
Part number
Comments
Maxim
MAX2659ELT+
Low noise figure, up to 10 dBm RF input power
JRC New Japan Radio
NJG1143UA2
Low noise figure, up to 15 dBm RF input power
NXP
BGU8006
Low noise figure, very small package size (WL-CSP)
Infineon
BGA524N6
Low noise figure, small package size
Table 27: Examples of GNSS Low Noise Amplifiers
Table 28 lists examples of ferrite beads suitable for the supply line of an external GNSS LNA.
Manufacturer
Part number
Comments
Murata
BLM15HD102SN1
High impedance at 1.575 GHz
Murata
BLM15HD182SN1
High impedance at 1.575 GHz
TDK
MMZ1005F121E
High impedance at 1.575 GHz
TDK
MMZ1005A121E
High impedance at 1.575 GHz
Table 28: Examples of ferrite beads for the supply line of external GNSS Low Noise Amplifiers
Table 29 lists examples of passive antennas suitable for the GNSS RF input of SARA-R422M8S.
Manufacturer
Part number
Product name
Description
Tallysman
TW3400P
Passive antenna
GPS / SBAS / QZSS / GLONASS
Tallysman
TW3710P
Passive antenna
GPS / SBAS / QZSS / GLONASS / Galileo / BeiDou
Taoglas
CGGBP.35.3.A.02
Ceramic patch antenna
GPS / SBAS / QZSS / GLONASS / Galileo / BeiDou
Taoglas
CGGBP.18.4.A.02
Embedded patch antenna
GPS / SBAS / QZSS / GLONASS / Galileo / BeiDou
Inpaq
PA1590MF6G
Patch antenna
GPS / SBAS / QZSS / GLONASS
Yageo
ANT2525B00BT1516S
Ceramic patch antenna
GPS / SBAS / QZSS / GLONASS
Antenova
SR4G008
Sinica
Ultra-low profile patch antenna
GPS / SBAS / QZSS / GLONASS / Galileo / BeiDou
Table 29: Examples of GNSS passive antennas
2.4.3.2 Guidelines for applications with an active antenna
Active antennas offer higher gain and better overall performance compared with passive antennas
(without additional external SAW filter and LNA). However, the integrated low-noise amplifier
contributes an additional current of typically 5 to 20 mA to the ’ystem's power consumption budget.
Active antennas for GNSS applications are usually powered through a DC bias on the RF cable. A
simple bias-T, as shown in Figure 42, can be used to add this DC current to the RF signal line. The
inductance L is responsible for isolating the RF path from the DC path. It should be selected to offer
high impedance (> 500 Ω) at L-band frequencies. A series current limiting resistor is required to
prevent short circuits destroying the bias-t inductor.