Integration Manual
Table Of Contents
- Document information
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC)
- 1.5.1.1 VCC supply requirements
- 1.5.1.2 VCC current consumption in LTE connected mode
- 1.5.1.3 VCC current consumption in 2G connected mode
- 1.5.1.4 VCC current consumption in ultra low power deep sleep mode
- 1.5.1.5 VCC current consumption in low power idle mode
- 1.5.1.6 VCC current consumption in active mode (PSM / low power disabled)
- 1.5.2 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC)
- 1.6 System function interfaces
- 1.7 Antenna interfaces
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 GNSS peripheral input output
- 1.13 Reserved pins (RSVD)
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using LDO linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary battery
- 2.2.1.6 Guidelines for external battery charging circuit
- 2.2.1.7 Guidelines for external charging and power path management circuit
- 2.2.1.8 Guidelines for particular VCC supply circuit design for SARA-R4x2
- 2.2.1.9 Guidelines for removing VCC supply
- 2.2.1.10 Additional guidelines for VCC supply circuit design
- 2.2.1.11 Guidelines for VCC supply layout design
- 2.2.1.12 Guidelines for grounding layout design
- 2.2.2 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interfaces
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio
- 2.8 General Purpose Input/Output
- 2.9 GNSS peripheral input output
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 Module footprint and paste mask
- 2.13 Thermal guidelines
- 2.14 Schematic for SARA-R4 series module integration
- 2.15 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science, Economic Development Canada notice
- 4.4 European Conformance CE mark
- 4.5 National Communication Commission Taiwan
- 4.6 ANATEL Brazil
- 4.7 Australian Conformance
- 4.8 GITEKI Japan
- 4.9 KC South Korea
- 5 Product testing
- Appendix
- A Migration between SARA modules
- B Glossary
- Related documentation
- Revision history
- Contact
SARA-R4 series - System integration manual
UBX-16029218 - R20 Handling and soldering Page 106 of 129
C1-Public
3.3.5 Repeated reflow soldering
Repeated reflow soldering processes and soldering the module upside-down are not recommended.
Boards with components on both sides may require two reflow cycles. In this case, the module should
always be placed on the side of the board that is submitted into the last reflow cycle. The reason for
this (besides others) is the risk of the module falling off due to the significantly higher weight in
relation to other components.
☞ u-blox gives no warranty against damages to the SARA-R4 series modules caused by performing
more than a total of two reflow soldering processes (one reflow soldering process to mount the
SARA-R4 series module, plus one reflow soldering process to mount other parts).
3.3.6 Wave soldering
SARA-R4 series LGA modules must not be soldered with a wave soldering process.
Boards with combined through-hole technology (THT) components and surface-mount technology
(SMT) devices require wave soldering to solder the THT components. No more than one wave
soldering process is allowed for a board with a SARA-R4 series module already populated on it.
⚠ Performing a wave soldering process on the module can result in severe damage to the device!
☞ u-blox gives no warranty against damages to the SARA-R4 series modules caused by performing
more than a total of two soldering processes (one reflow soldering process to mount the SARA-R4
series module, plus one wave soldering process to mount other THT parts on the application
board).
3.3.7 Hand soldering
Hand soldering is not recommended.
3.3.8 Rework
Rework is not recommended.
☞ Never attempt a rework on the module itself, e.g. replacing individual components. Such actions
immediately terminate the warranty.
3.3.9 Conformal coating
Certain applications employ a conformal coating of the PCB using HumiSeal
®
or other related coating
products.
These materials affect the HF properties of the cellular modules and it is important to prevent them
from flowing into the module.
The RF shields do not provide 100% protection for the module from coating liquids with low viscosity,
therefore care is required in applying the coating.
☞ Conformal Coating of the module will void the warranty.
3.3.10 Casting
If casting is required, use viscose or another type of silicon pottant. The OEM is strongly advised to
qualify such processes in combination with the cellular modules before implementing this in
production.
☞ Casting will void the warranty.