Integration Manual
Table Of Contents
- Document information
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC)
- 1.5.1.1 VCC supply requirements
- 1.5.1.2 VCC current consumption in LTE connected mode
- 1.5.1.3 VCC consumption in deep-sleep mode (low power mode and PSM enabled)
- 1.5.1.4 VCC current consumption in low power idle mode (low power mode enabled)
- 1.5.1.5 VCC current consumption in active mode (low power mode and PSM disabled)
- 1.5.2 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC)
- 1.6 System function interfaces
- 1.7 Antenna interfaces
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General purpose input / output (GPIO)
- 1.12 Reserved pin (RSVD)
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using low drop-out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary battery
- 2.2.1.6 Guidelines for external battery charging circuit
- 2.2.1.7 Guidelines for external charging and power path management circuit
- 2.2.1.8 Guidelines for removing VCC supply
- 2.2.1.9 Additional guidelines for VCC supply circuit design
- 2.2.1.10 Guidelines for VCC supply layout design
- 2.2.1.11 Guidelines for grounding layout design
- 2.2.2 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interfaces
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.6.1 UART interfaces
- 2.6.1.1 Guidelines for UART circuit design
- Providing 1 UART with the full RS-232 functionality (using the complete V.24 link)
- Providing 1 UART with the TXD, RXD, RTS, CTS, DTR and RI lines only
- Providing 1 UART with the TXD, RXD, RTS and CTS lines only
- Providing 2 UARTs with the TXD, RXD, RTS and CTS lines only
- Providing 1 UART with the TXD and RXD lines only
- Providing 2 UARTs with the TXD and RXD lines only
- Additional considerations
- 2.6.1.2 Guidelines for UART layout design
- 2.6.1.1 Guidelines for UART circuit design
- 2.6.2 USB interface
- 2.6.3 SPI interfaces
- 2.6.4 SDIO interface
- 2.6.5 DDC (I2C) interface
- 2.6.1 UART interfaces
- 2.7 Audio
- 2.8 General purpose input / output (GPIO)
- 2.9 Reserved pin (RSVD)
- 2.10 Module placement
- 2.11 Module footprint and paste mask
- 2.12 Schematic for SARA-R5 series module integration
- 2.13 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 5 Product testing
- Appendix
- A Migration between SARA modules
- B Glossary
- Related documents
- Revision history
- Contact
SARA-R5 series - System integration manual
UBX-19041356 - R03 Approvals Page 97 of 123
Confidential
The SARA-R5 series modules include the capability to configure the device by selecting the operating
Mobile Network Operator Profile, Radio Access Technology, and bands. In the SARA-R5 series AT
commands manual [2], see the +UMNOPROF, +URAT, and +UBANDMASK AT commands.
As these configuration decisions are made, u-blox reminds manufacturers of the host application
device integrating the SARA-R5 series modules to take care of compliance with all the certification
approvals requirements applicable to the specific integrating device to be deployed in the market.
☞ It is strongly recommended to configure the module to the applicable MNO profile, RAT, and LTE
bands intended for the host end-device and within regulatory compliance.
☞ The certification of the host application device that integrates a SARA-R5 series module and the
compliance of the host application device with all the applicable certification schemes, directives
and standards are the sole responsibility of the host application device manufacturer.
SARA-R5 series modules are certified according to all capabilities and options stated in the Protocol
Implementation Conformance Statement document (PICS) of the module. The PICS, according to the
3GPP TS 36.521-2 [12] and 3GPP TS 36.523-2 [13], is a statement of the implemented and supported
capabilities and options of a device.
☞ The PICS document of the host device integrating SARA-R5 series modules must be updated from
the module PICS statement if any feature stated as supported by the module in its PICS document
is not implemented or disabled in the host application device. For more details regarding the AT
commands settings that affect the PICS, see the SARA-R5 series AT commands manual [2].
☞ Check the specific settings required by the mobile network operators in use by the host application
device, as they may differ from the AT commands factory-programmed settings of the module.
4.2 US Federal Communications Commission notice
United States Federal Communications Commission (FCC) ID: XPYUBX19KM01
4.2.1 Safety warnings review the structure
Equipment for building-in. Requirements for fire enclosure must be evaluated in the end product
The clearance and creepage current distances required by the end product must be withheld when
the module is installed
The cooling of the end product shall not negatively be influenced by the installation of the module
Excessive sound pressure from earphones and headphones can cause hearing loss
No natural rubbers, hygroscopic materials, or materials containing asbestos are employed
4.2.2 Declaration of Conformity
This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions:
this device may not cause harmful interference
this device must accept any interference received, including interference that may cause
undesired operation
⚠ Radiofrequency radiation exposure information: this equipment complies with the radiation
exposure limits prescribed for an uncontrolled environment for fixed and mobile use conditions.
This equipment should be installed and operated with a minimum distance of 20 cm between the
radiator and the body of the user or nearby persons. This transmitter must not be co-located or
operating in conjunction with any other antenna or transmitter except as authorized in the
certification of the product.