Integration Manual
Table Of Contents
- Document information
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC)
- 1.5.1.1 VCC supply requirements
- 1.5.1.2 VCC current consumption in LTE connected mode
- 1.5.1.3 VCC consumption in deep-sleep mode (low power mode and PSM enabled)
- 1.5.1.4 VCC current consumption in low power idle mode (low power mode enabled)
- 1.5.1.5 VCC current consumption in active mode (low power mode and PSM disabled)
- 1.5.2 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC)
- 1.6 System function interfaces
- 1.7 Antenna interfaces
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General purpose input / output (GPIO)
- 1.12 Reserved pin (RSVD)
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using low drop-out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary battery
- 2.2.1.6 Guidelines for external battery charging circuit
- 2.2.1.7 Guidelines for external charging and power path management circuit
- 2.2.1.8 Guidelines for removing VCC supply
- 2.2.1.9 Additional guidelines for VCC supply circuit design
- 2.2.1.10 Guidelines for VCC supply layout design
- 2.2.1.11 Guidelines for grounding layout design
- 2.2.2 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interfaces
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.6.1 UART interfaces
- 2.6.1.1 Guidelines for UART circuit design
- Providing 1 UART with the full RS-232 functionality (using the complete V.24 link)
- Providing 1 UART with the TXD, RXD, RTS, CTS, DTR and RI lines only
- Providing 1 UART with the TXD, RXD, RTS and CTS lines only
- Providing 2 UARTs with the TXD, RXD, RTS and CTS lines only
- Providing 1 UART with the TXD and RXD lines only
- Providing 2 UARTs with the TXD and RXD lines only
- Additional considerations
- 2.6.1.2 Guidelines for UART layout design
- 2.6.1.1 Guidelines for UART circuit design
- 2.6.2 USB interface
- 2.6.3 SPI interfaces
- 2.6.4 SDIO interface
- 2.6.5 DDC (I2C) interface
- 2.6.1 UART interfaces
- 2.7 Audio
- 2.8 General purpose input / output (GPIO)
- 2.9 Reserved pin (RSVD)
- 2.10 Module placement
- 2.11 Module footprint and paste mask
- 2.12 Schematic for SARA-R5 series module integration
- 2.13 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 5 Product testing
- Appendix
- A Migration between SARA modules
- B Glossary
- Related documents
- Revision history
- Contact
SARA-R5 series - System integration manual
UBX-19041356 - R03 Handling and soldering Page 91 of 123
Confidential
3 Handling and soldering
☞ No natural rubbers, no hygroscopic materials or materials containing asbestos are employed.
3.1 Packaging, shipping, storage and moisture preconditioning
For information pertaining to SARA-R5 series reels / tapes, Moisture Sensitivity levels (MSD),
shipment and storage information, as well as drying for preconditioning, see the SARA-R5 series data
sheet [1] and the u-blox package information user guide [15].
3.2 Handling
The SARA-R5 series modules are Electro-Static Discharge (ESD) sensitive devices.
⚠ Ensure ESD precautions are implemented during handling of the module.
Electro-Static Discharge (ESD) is the sudden and momentary electric current that flows between two
objects at different electrical potentials caused by direct contact or induced by an electrostatic field.
The term is usually used in the electronics and other industries to describe momentary unwanted
currents that may cause damage to electronic equipment.
The ESD sensitivity for each pin of SARA-R5 series modules (as Human Body Model according to
JESD22-A114F) is specified in the SARA-R5 series data sheet [1].
ESD prevention is based on establishing an Electrostatic Protective Area (EPA). The EPA can be a
small working station or a large manufacturing area. The main principle of an EPA is that there are no
highly charging materials near ESD sensitive electronics, all conductive materials are grounded,
workers are grounded, and charge build-up on ESD sensitive electronics is prevented. International
standards are used to define typical EPA and can be obtained for example from the International
Electrotechnical Commission (IEC) or the American National Standards Institute (ANSI).
In addition to standard ESD safety practices, the following measures should be taken into account
whenever handling the SARA-R5 series modules:
Unless there is a galvanic coupling between the local GND (i.e. the work table) and the PCB GND,
then the first point of contact when handling the PCB must always be between the local GND and
PCB GND.
Before mounting an antenna patch, connect the ground of the device.
When handling the module, do not come into contact with any charged capacitors and be careful
when contacting materials that can develop charges (e.g. patch antenna, coax cable, soldering
iron).
To prevent electrostatic discharge through the RF pin, do not touch any exposed antenna area. If
there is any risk that such exposed antenna area is touched in a non-ESD protected work area,
implement adequate ESD protection measures in the design.
When soldering the module and patch antennas to the RF pin, make sure to use an ESD-safe
soldering iron.