Integration Manual
Table Of Contents
- Document information
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC)
- 1.5.1.1 VCC supply requirements
- 1.5.1.2 VCC current consumption in LTE connected mode
- 1.5.1.3 VCC consumption in deep-sleep mode (low power mode and PSM enabled)
- 1.5.1.4 VCC current consumption in low power idle mode (low power mode enabled)
- 1.5.1.5 VCC current consumption in active mode (low power mode and PSM disabled)
- 1.5.2 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC)
- 1.6 System function interfaces
- 1.7 Antenna interfaces
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General purpose input / output (GPIO)
- 1.12 Reserved pin (RSVD)
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using low drop-out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary battery
- 2.2.1.6 Guidelines for external battery charging circuit
- 2.2.1.7 Guidelines for external charging and power path management circuit
- 2.2.1.8 Guidelines for removing VCC supply
- 2.2.1.9 Additional guidelines for VCC supply circuit design
- 2.2.1.10 Guidelines for VCC supply layout design
- 2.2.1.11 Guidelines for grounding layout design
- 2.2.2 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interfaces
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.6.1 UART interfaces
- 2.6.1.1 Guidelines for UART circuit design
- Providing 1 UART with the full RS-232 functionality (using the complete V.24 link)
- Providing 1 UART with the TXD, RXD, RTS, CTS, DTR and RI lines only
- Providing 1 UART with the TXD, RXD, RTS and CTS lines only
- Providing 2 UARTs with the TXD, RXD, RTS and CTS lines only
- Providing 1 UART with the TXD and RXD lines only
- Providing 2 UARTs with the TXD and RXD lines only
- Additional considerations
- 2.6.1.2 Guidelines for UART layout design
- 2.6.1.1 Guidelines for UART circuit design
- 2.6.2 USB interface
- 2.6.3 SPI interfaces
- 2.6.4 SDIO interface
- 2.6.5 DDC (I2C) interface
- 2.6.1 UART interfaces
- 2.7 Audio
- 2.8 General purpose input / output (GPIO)
- 2.9 Reserved pin (RSVD)
- 2.10 Module placement
- 2.11 Module footprint and paste mask
- 2.12 Schematic for SARA-R5 series module integration
- 2.13 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 5 Product testing
- Appendix
- A Migration between SARA modules
- B Glossary
- Related documents
- Revision history
- Contact
SARA-R5 series - System integration manual
UBX-19041356 - R03 Design-in Page 82 of 123
Confidential
Figure 62 and Figure 63 provide two examples of coplanar waveguide designs with differential
characteristic impedance close to 90 and common mode characteristic impedance close to 30 .
The first transmission line can be implemented in case of 4-layer PCB stack-up herein described, the
second transmission line can be implemented in case of 2-layer PCB stack-up herein described.
35 µm
35 µm
35 µm
35 µm
270 µm
270 µm
760 µm
L1 copper
L3 copper
L2 copper
L4 copper
FR-4 dielectric
FR-4 dielectric
FR-4 dielectric
350 µm 400 µm400 µm350 µm400 µm
Figure 62: Example of USB line design, with Z0 close to 90 and ZCM close to 30 , for the described 4-layer board layup
35 µm
35 µm
1510 µm
L2 copper
L1 copper
FR-4 dielectric
740 µm 410 µm410 µm740 µm410 µm
Figure 63: Example of USB line design, with Z
0
close to 90 and Z
CM
close to 30 , for the described 2-layer board layup
2.6.3 SPI interfaces
☞ The SPI interfaces are not supported by the “00” product version of SARA-R5 series modules,
except for diagnostic purpose.
☞ It is recommended to provide accessible test points directly connected to the SDIO_D0, SDIO_D1,
SDIO_D2 and SDIO_D3 pins for diagnostic purpose.
2.6.4 SDIO interface
☞ The SDIO interface is not supported by the “00” product version of SARA-R5 series modules.
☞ It is recommended to provide accessible test points directly connected to the SDIO_D0, SDIO_D1,
SDIO_D2 and SDIO_D3 pins for diagnostic purpose.