Integration Manual
Table Of Contents
- Document information
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC)
- 1.5.1.1 VCC supply requirements
- 1.5.1.2 VCC current consumption in LTE connected mode
- 1.5.1.3 VCC consumption in deep-sleep mode (low power mode and PSM enabled)
- 1.5.1.4 VCC current consumption in low power idle mode (low power mode enabled)
- 1.5.1.5 VCC current consumption in active mode (low power mode and PSM disabled)
- 1.5.2 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC)
- 1.6 System function interfaces
- 1.7 Antenna interfaces
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General purpose input / output (GPIO)
- 1.12 Reserved pin (RSVD)
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using low drop-out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary battery
- 2.2.1.6 Guidelines for external battery charging circuit
- 2.2.1.7 Guidelines for external charging and power path management circuit
- 2.2.1.8 Guidelines for removing VCC supply
- 2.2.1.9 Additional guidelines for VCC supply circuit design
- 2.2.1.10 Guidelines for VCC supply layout design
- 2.2.1.11 Guidelines for grounding layout design
- 2.2.2 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interfaces
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.6.1 UART interfaces
- 2.6.1.1 Guidelines for UART circuit design
- Providing 1 UART with the full RS-232 functionality (using the complete V.24 link)
- Providing 1 UART with the TXD, RXD, RTS, CTS, DTR and RI lines only
- Providing 1 UART with the TXD, RXD, RTS and CTS lines only
- Providing 2 UARTs with the TXD, RXD, RTS and CTS lines only
- Providing 1 UART with the TXD and RXD lines only
- Providing 2 UARTs with the TXD and RXD lines only
- Additional considerations
- 2.6.1.2 Guidelines for UART layout design
- 2.6.1.1 Guidelines for UART circuit design
- 2.6.2 USB interface
- 2.6.3 SPI interfaces
- 2.6.4 SDIO interface
- 2.6.5 DDC (I2C) interface
- 2.6.1 UART interfaces
- 2.7 Audio
- 2.8 General purpose input / output (GPIO)
- 2.9 Reserved pin (RSVD)
- 2.10 Module placement
- 2.11 Module footprint and paste mask
- 2.12 Schematic for SARA-R5 series module integration
- 2.13 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 5 Product testing
- Appendix
- A Migration between SARA modules
- B Glossary
- Related documents
- Revision history
- Contact
SARA-R5 series - System integration manual
UBX-19041356 - R03 Design-in Page 66 of 123
Confidential
The DC impedance at RF port for some antennas may be a DC open (e.g. linear monopole) or a DC short
to reference GND (e.g. PIFA antenna). For those antennas, without the diagnostic circuit of Figure 43,
the measured DC resistance is always at the limits of the measurement range (respectively open or
short), and there is no mean to distinguish between a defect on antenna path with similar
characteristics (respectively: removal of linear antenna or RF cable shorted to GND for PIFA antenna).
Furthermore, any other DC signal injected to the RF connection from ANT connector to radiating
element will alter the measurement and produce invalid results for antenna detection.
☞ It is recommended to use an antenna with a built-in diagnostic resistor in the range from 5 k to
30 k to assure good antenna detection functionality and avoid a reduction of module RF
performance. The choke inductor should exhibit a parallel Self-Resonance Frequency (SRF) in the
range of 1 GHz to improve the RF isolation of load resistor.
For example:
Consider an antenna with built-in DC load resistor of 15 k. Using the +UANTR AT command, the
module reports the resistance value evaluated from the antenna connector provided on the
application board to GND:
Reported values close to the used diagnostic resistor nominal value (i.e. values from 13 k to 17 k
if a 15 k diagnostic resistor is used) indicate that the antenna is correctly connected.
Values close to the measurement range maximum limit or an open-circuit “over range” report (see
the SARA-R5 series AT commands manual [2]) means that the antenna is not connected or the
RF cable is broken.
Reported values below the measurement range minimum limit highlights a short to GND at
antenna or along the RF cable.
Measurement inside the valid measurement range and outside the expected range may indicate
an unclean connection, a damaged antenna or incorrect value of the antenna load resistor for
diagnostics.
Reported value could differ from the real resistance value of the diagnostic resistor mounted
inside the antenna assembly due to antenna cable length, antenna cable capacity and the used
measurement method.
☞ If the antenna detection function is not required by the customer application, the ANT_DET pin
can be left not connected and the ANT pin can be directly connected to the antenna connector by
means of a 50 transmission line as described in Figure 33.