Integration Manual
Table Of Contents
- Document information
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC)
- 1.5.1.1 VCC supply requirements
- 1.5.1.2 VCC current consumption in LTE connected mode
- 1.5.1.3 VCC consumption in deep-sleep mode (low power mode and PSM enabled)
- 1.5.1.4 VCC current consumption in low power idle mode (low power mode enabled)
- 1.5.1.5 VCC current consumption in active mode (low power mode and PSM disabled)
- 1.5.2 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC)
- 1.6 System function interfaces
- 1.7 Antenna interfaces
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General purpose input / output (GPIO)
- 1.12 Reserved pin (RSVD)
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using low drop-out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary battery
- 2.2.1.6 Guidelines for external battery charging circuit
- 2.2.1.7 Guidelines for external charging and power path management circuit
- 2.2.1.8 Guidelines for removing VCC supply
- 2.2.1.9 Additional guidelines for VCC supply circuit design
- 2.2.1.10 Guidelines for VCC supply layout design
- 2.2.1.11 Guidelines for grounding layout design
- 2.2.2 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interfaces
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.6.1 UART interfaces
- 2.6.1.1 Guidelines for UART circuit design
- Providing 1 UART with the full RS-232 functionality (using the complete V.24 link)
- Providing 1 UART with the TXD, RXD, RTS, CTS, DTR and RI lines only
- Providing 1 UART with the TXD, RXD, RTS and CTS lines only
- Providing 2 UARTs with the TXD, RXD, RTS and CTS lines only
- Providing 1 UART with the TXD and RXD lines only
- Providing 2 UARTs with the TXD and RXD lines only
- Additional considerations
- 2.6.1.2 Guidelines for UART layout design
- 2.6.1.1 Guidelines for UART circuit design
- 2.6.2 USB interface
- 2.6.3 SPI interfaces
- 2.6.4 SDIO interface
- 2.6.5 DDC (I2C) interface
- 2.6.1 UART interfaces
- 2.7 Audio
- 2.8 General purpose input / output (GPIO)
- 2.9 Reserved pin (RSVD)
- 2.10 Module placement
- 2.11 Module footprint and paste mask
- 2.12 Schematic for SARA-R5 series module integration
- 2.13 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 5 Product testing
- Appendix
- A Migration between SARA modules
- B Glossary
- Related documents
- Revision history
- Contact
SARA-R5 series - System integration manual
UBX-19041356 - R03 Design-in Page 56 of 123
Confidential
Place the antenna far from sensitive analog systems or employ countermeasures to reduce EMC
or EMI issues.
Be aware of interaction between co-located RF systems since the LTE transmitted power may
interact or disturb the performance of companion systems (see also section 1.7.4).
☞ Refer to section 2.4.2.3 for the description of the antenna trace design implemented on the u-blox
host printed circuit board used for conformity assessment of SARA-R5 series surface-mounted
modules for regulatory type approvals such as FCC United States, ISED Canada, RED Europe, etc.
2.4.2 Cellular antenna RF interface (ANT)
2.4.2.1 Guidelines for antenna selection and design
The antenna is the most critical component to be evaluated. Designers must take care of the antenna
from all perspective at the very start of the design phase when the physical dimensions of the
application board are under analysis/decision, since the cellular compliance of the device integrating
SARA-R5 series modules with all the applicable required certification schemes depends on antenna’s
radiating performance.
Cellular antennas are typically available as:
External antennas (e.g. linear monopole):
o External antennas basically do not imply physical restriction to the design of the PCB where
the SARA-R5 series module is mounted.
o The radiation performance mainly depends on the antennas. It is required to select antennas
with optimal radiating performance in the operating bands.
o RF cables should be carefully selected to have minimum insertion losses. Additional insertion
loss will be introduced by low quality or long cable. Large insertion loss reduces both transmit
and receive radiation performance.
o A high quality 50 RF connector provides a clean PCB-to-RF-cable transition. It is
recommended to strictly follow the layout and cable termination guidelines provided by the
connector manufacturer.
Integrated antennas (e.g. PCB antennas such as patches or ceramic SMT elements):
o Internal integrated antennas imply physical restriction to the design of the PCB: Integrated
antenna excites RF currents on its counterpoise, typically the PCB ground plane of the device
that becomes part of the antenna: its dimension defines the minimum frequency that can be
radiated. Therefore, the ground plane can be reduced down to a minimum size that should be
similar to the quarter of the wavelength of the minimum frequency that needs to be radiated,
given that the orientation of the ground plane relative to the antenna element must be
considered. As numerical example, the physical restriction to the PCB design can be
considered as following:
Frequency = 617 MHz Wavelength 48 cm Minimum GND plane size 12 cm
o Radiation performance depends on the whole PCB and antenna system design, including
product mechanical design and usage. Antennas should be selected with optimal radiating
performance in the operating bands according to the mechanical specifications of the PCB and
the whole product.
o It is recommended to select a custom antenna designed by an antennas’ manufacturer if the
required ground plane dimensions are very small (e.g. less than 6.5 cm long and 4 cm wide). The
antenna design process should begin at the start of the whole product design process.
o It is highly recommended to strictly follow the detailed and specific guidelines provided by the
antenna manufacturer regarding correct installation and deployment of the antenna system,
including PCB layout and matching circuitry.