Integration Manual
Table Of Contents
- Document information
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC)
- 1.5.1.1 VCC supply requirements
- 1.5.1.2 VCC current consumption in LTE connected mode
- 1.5.1.3 VCC consumption in deep-sleep mode (low power mode and PSM enabled)
- 1.5.1.4 VCC current consumption in low power idle mode (low power mode enabled)
- 1.5.1.5 VCC current consumption in active mode (low power mode and PSM disabled)
- 1.5.2 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC)
- 1.6 System function interfaces
- 1.7 Antenna interfaces
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General purpose input / output (GPIO)
- 1.12 Reserved pin (RSVD)
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using low drop-out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary battery
- 2.2.1.6 Guidelines for external battery charging circuit
- 2.2.1.7 Guidelines for external charging and power path management circuit
- 2.2.1.8 Guidelines for removing VCC supply
- 2.2.1.9 Additional guidelines for VCC supply circuit design
- 2.2.1.10 Guidelines for VCC supply layout design
- 2.2.1.11 Guidelines for grounding layout design
- 2.2.2 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interfaces
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.6.1 UART interfaces
- 2.6.1.1 Guidelines for UART circuit design
- Providing 1 UART with the full RS-232 functionality (using the complete V.24 link)
- Providing 1 UART with the TXD, RXD, RTS, CTS, DTR and RI lines only
- Providing 1 UART with the TXD, RXD, RTS and CTS lines only
- Providing 2 UARTs with the TXD, RXD, RTS and CTS lines only
- Providing 1 UART with the TXD and RXD lines only
- Providing 2 UARTs with the TXD and RXD lines only
- Additional considerations
- 2.6.1.2 Guidelines for UART layout design
- 2.6.1.1 Guidelines for UART circuit design
- 2.6.2 USB interface
- 2.6.3 SPI interfaces
- 2.6.4 SDIO interface
- 2.6.5 DDC (I2C) interface
- 2.6.1 UART interfaces
- 2.7 Audio
- 2.8 General purpose input / output (GPIO)
- 2.9 Reserved pin (RSVD)
- 2.10 Module placement
- 2.11 Module footprint and paste mask
- 2.12 Schematic for SARA-R5 series module integration
- 2.13 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 5 Product testing
- Appendix
- A Migration between SARA modules
- B Glossary
- Related documents
- Revision history
- Contact
SARA-R5 series - System integration manual
UBX-19041356 - R03 Design-in Page 43 of 123
Confidential
Reference
Description
Part number - Manufacturer
B1
Li-Ion (or Li-Pol) battery pack with 470 NTC
Generic manufacturer
C1, C2
1 F capacitor ceramic X7R 16 V
Generic manufacturer
C3
15 pF capacitor ceramic C0G 0402 5% 50 V
GRM1555C1H150JB01 - Murata
C4
68 pF capacitor ceramic C0G 0402 5% 50 V
GRM1555C1H680JA16 - Murata
C5
10 nF capacitor ceramic X7R 0402 10% 16 V
GRT155R71C103KE01 - Murata
C6
100 nF capacitor ceramic X7R 0402 10% 16 V
GCM155R71C104KA55 - Murata
D1, D2
Low capacitance ESD protection
CG0402MLE-18G - Bourns
R1
10 k resistor 0.1 W
Generic manufacturer
U1
Single cell Li-Ion (or Li-Pol) battery charger IC
MCP73833 - Microchip
Table 11: Suggested components for the Li-Ion (or Li-Pol) battery charging application circuit
☞ See the section 2.2.1.9, and in particular Figure 26 / Table 14, for the parts recommended to be
provided if the application device integrates an internal antenna.
2.2.1.7 Guidelines for external charging and power path management circuit
Application devices where both a permanent primary supply / charging source (e.g. ~12 V) and a
rechargeable back-up battery (e.g. 3.7 V Li-Pol) are available at the same time as a possible supply
source, should implement a suitable charger / regulator with integrated power path management
function to supply the module and the whole device while simultaneously and independently charging
the battery.
Figure 23 reports a simplified block diagram circuit showing the working principle of a charger /
regulator with integrated power path management function. This component allows the system to be
powered by a permanent primary supply source (e.g. ~12 V) using the integrated regulator, which
simultaneously and independently recharges the battery (e.g. 3.7 V Li-Pol) that represents the
back-up supply source of the system. The power path management feature permits the battery to
supplement the system current requirements when the primary supply source is not available or
cannot deliver the peak system currents.
A power management IC should meet the following prerequisites to comply with the module VCC
requirements summarized in Table 5:
High efficiency internal step down converter, with characteristics as indicated in section 2.2.1.2
Low internal resistance in the active path Vout – Vbat, typically lower than 50 m
High efficiency switch mode charger with separate power path control
GND
Power path management IC
VoutVin
θ
Li-Ion/Li-Pol
battery pack
GND
System
12 V
primary
source
Charge
controller
DC/DC converter
and battery FET
control logic
Vbat
Figure 23: Charger / regulator with integrated power path management circuit block diagram