Integration Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.5.1.1 VCC or 3.3Vaux supply requirements
- 1.5.1.2 VCC or 3.3Vaux current consumption in 2G connected-mode
- 1.5.1.3 VCC or 3.3Vaux current consumption in 3G connected mode
- 1.5.1.4 VCC or 3.3Vaux current consumption in LTE connected-mode
- 1.5.1.5 VCC or 3.3Vaux current consumption in cyclic idle/active mode (power saving enabled)
- 1.5.1.6 VCC or 3.3Vaux current consumption in fixed active-mode (power saving disabled)
- 1.5.2 RTC supply input/output (V_BCKP)
- 1.5.3 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 1.13 Reserved pins (RSVD)
- 1.14 Not connected pins (NC)
- 1.15 System features
- 1.15.1 Network indication
- 1.15.2 Antenna supervisor
- 1.15.3 Jamming detection
- 1.15.4 IP modes of operation
- 1.15.5 Dual stack IPv4/IPv6
- 1.15.6 TCP/IP and UDP/IP
- 1.15.7 FTP
- 1.15.8 HTTP
- 1.15.9 SSL / TLS
- 1.15.10 Bearer Independent Protocol
- 1.15.11 Wi-Fi integration
- 1.15.12 Firmware update Over AT (FOAT)
- 1.15.13 Firmware update Over The Air (FOTA)
- 1.15.14 Smart temperature management
- 1.15.15 SIM Access Profile (SAP)
- 1.15.16 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.2.1.1 General guidelines for VCC or 3.3Vaux supply circuit selection and design
- 2.2.1.2 Guidelines for VCC or 3.3Vaux supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC or 3.3Vaux supply circuit design using a Low Drop-Out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC or 3.3Vaux supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC or 3.3Vaux supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply output (V_BCKP)
- 2.2.3 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio interface
- 2.8 General Purpose Input/Output
- 2.9 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 TOBY-L2 series module footprint and paste mask
- 2.13 MPCI-L2 series module installation
- 2.14 Thermal guidelines
- 2.15 ESD guidelines
- 2.16 Schematic for TOBY-L2 and MPCI-L2 series module integration
- 2.17 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science and Economic Development Canada notice
- 4.4 Brazilian Anatel certification
- 4.5 European Conformance CE mark
- 4.6 Australian Regulatory Compliance Mark
- 4.7 Taiwanese NCC certification
- 4.8 Japanese Giteki certification
- 5 Product testing
- Appendix
- A Migration between TOBY-L1 and TOBY-L2
- B Glossary
- Related documents
- Revision history
- Contact
TOBY-L2 and MPCI-L2 series - System Integration Manual
UBX-13004618 - R26 Design-in
Page 91 of 162
Guidelines for MPCI-L2 series ANT1 / ANT2 receptacles RF connection design
The Hirose U.FL-R-SMT RF receptacles implemented on the MPCI-L2 series modules for ANT1 / ANT2 ports require
a suitable mated RF plug from the same connector series. Due to its wide usage in the industry, several
manufacturers offer compatible equivalents.
Table 31 lists some RF connector plugs that fit MPCI-L2 series modules RF connector receptacles, based on the
declaration of the respective manufacturers. Only the Hirose has been qualified for the MPCI-L2 series modules;
contact other producers to verify compatibility.
Manufacturer
Series
Remarks
Hirose
U.FL® Ultra Small Surface Mount Coaxial Connector
Recommended
I-PEX
MHF® Micro Coaxial Connector
Tyco
UMCC® Ultra-Miniature Coax Connector
Amphenol RF
AMC® Amphenol Micro Coaxial
Lighthorse Technologies, Inc
IPX ultra micro-miniature RF connector
Table 31: MPCI-L2 series U.FL compatible plug connector
Typically the RF plug is available as a cable assembly: several kinds are available and the user should select the
cable assembly best suited to the application. The key characteristics are:
RF plug type: select U.FL or equivalent
Nominal impedance: 50
Cable thickness: typically from 0.8 mm to 1.37 mm. Select thicker cables to minimize insertion loss
Cable length: standard length is typically 100 mm or 200 mm, custom lengths may be available on request.
Select shorter cables to minimize insertion loss
RF connector on the other side of the cable: for example another U.FL (for board-to-board connection) or SMA
(for panel mounting)
For applications requiring an internal integrated SMT antenna, it is suggested to use a U-FL-to-U.FL cable to provide
RF path from the MPCI-L2 series module to PCB strip line or micro strip connected to antenna pads as shown in
Figure 45. Take care that the PCB-to-RF-cable transition, strip line and antenna pads must be designed so that the
characteristic impedance is as close as possible to 50 : see the following subsections for specific guidelines
regarding RF transmission line design and RF termination design.
If an external antenna is required, consider that the connector is typically rated for a limited number of insertion
cycles. In addition, the RF coaxial cable may be relatively fragile compared to other types of cables. To increase
application ruggedness, connect U.FL to a more robust connector (e.g. SMA or MMCX) fixed on panel or on flange
as shown in Figure 45.
MPCI-L2 series
Baseboard
Stripline/Microstrip
Internal
Antenna
Baseboard
Application
Chassis
Connector to
External Antenna
MPCI-L2 series
Screw / Fastener
for Mini PCIe
Screw / Fastener for Mini PCIe
Figure 45: Example of RF connections, U.FL-to-U.FL cable for internal antenna and U.FL-to-SMA for external antenna