Integration Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.5.1.1 VCC or 3.3Vaux supply requirements
- 1.5.1.2 VCC or 3.3Vaux current consumption in 2G connected-mode
- 1.5.1.3 VCC or 3.3Vaux current consumption in 3G connected mode
- 1.5.1.4 VCC or 3.3Vaux current consumption in LTE connected-mode
- 1.5.1.5 VCC or 3.3Vaux current consumption in cyclic idle/active mode (power saving enabled)
- 1.5.1.6 VCC or 3.3Vaux current consumption in fixed active-mode (power saving disabled)
- 1.5.2 RTC supply input/output (V_BCKP)
- 1.5.3 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 1.13 Reserved pins (RSVD)
- 1.14 Not connected pins (NC)
- 1.15 System features
- 1.15.1 Network indication
- 1.15.2 Antenna supervisor
- 1.15.3 Jamming detection
- 1.15.4 IP modes of operation
- 1.15.5 Dual stack IPv4/IPv6
- 1.15.6 TCP/IP and UDP/IP
- 1.15.7 FTP
- 1.15.8 HTTP
- 1.15.9 SSL / TLS
- 1.15.10 Bearer Independent Protocol
- 1.15.11 Wi-Fi integration
- 1.15.12 Firmware update Over AT (FOAT)
- 1.15.13 Firmware update Over The Air (FOTA)
- 1.15.14 Smart temperature management
- 1.15.15 SIM Access Profile (SAP)
- 1.15.16 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.2.1.1 General guidelines for VCC or 3.3Vaux supply circuit selection and design
- 2.2.1.2 Guidelines for VCC or 3.3Vaux supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC or 3.3Vaux supply circuit design using a Low Drop-Out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC or 3.3Vaux supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC or 3.3Vaux supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply output (V_BCKP)
- 2.2.3 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio interface
- 2.8 General Purpose Input/Output
- 2.9 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 TOBY-L2 series module footprint and paste mask
- 2.13 MPCI-L2 series module installation
- 2.14 Thermal guidelines
- 2.15 ESD guidelines
- 2.16 Schematic for TOBY-L2 and MPCI-L2 series module integration
- 2.17 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science and Economic Development Canada notice
- 4.4 Brazilian Anatel certification
- 4.5 European Conformance CE mark
- 4.6 Australian Regulatory Compliance Mark
- 4.7 Taiwanese NCC certification
- 4.8 Japanese Giteki certification
- 5 Product testing
- Appendix
- A Migration between TOBY-L1 and TOBY-L2
- B Glossary
- Related documents
- Revision history
- Contact
TOBY-L2 and MPCI-L2 series - System Integration Manual
UBX-13004618 - R26 System description
Page 55 of 162
Figure 25 shows the case where in addition to the wake-up character further (valid) characters are sent. The wake
up character wakes-up the module UART. The other characters must be sent after the “wake up time” of ~5 ms.
If this condition is satisfied, the module (DCE) recognizes characters. The module will disable the UART after 2000
GSM frames from the latest data reception.
Wake up character
Not recognized by DCE
Valid characters
Recognized by DCE
DCE UART is enabled for 2000 GSM frames (~9.2s)
after the last data received
time
Wake up time: ~5 ms
time
OFF
ON
TXD input
UART
OFF
ON
Figure 25: Wake-up via data reception with further communication
The “wake-up via data reception” feature cannot be disabled.
In command mode
17
, with “wake-up via data reception” enabled and autobauding enabled, the DTE should
always send a dummy character to the module before the “AT” prefix set at the beginning of each
command line: the first dummy character is ignored if the module is in active-mode, or it represents the
wake-up character if the module is in low power idle-mode.
In command mode
17
, with “wake-up via data reception” enabled and autobauding disabled, the DTE should
always send a dummy “AT” to the module before each command line: the first dummy “AT” is not ignored
if the module is in active-mode (i.e. the module replies “OK”), or it represents the wake up character if the
module is in low power idle-mode (i.e. the module does not reply).
Additional considerations
If the USB is connected and not suspended, the module is forced to stay in active-mode, therefore the AT+UPSV
settings are overruled but they have effect on the UART behavior (they configure UART power saving, so that
UART is enabled / disabled according to the AT+UPSV settings).
1.9.2.5 UART multiplexer protocol
TOBY-L2 series modules include multiplexer functionality as per 3GPP TS 27.010 [11], on the UART physical link.
This is a data link protocol which uses HDLC-like framing and operates between the module (DCE) and the
application processor (DTE) and allows a number of simultaneous sessions over the used physical link (UART): the
user can concurrently use AT interface on one MUX channel and data communication on another MUX channel.
The following virtual channels are defined (for more details, see Mux implementation Application Note [12]):
Channel 0: control channel
Channel 1 – 5: AT commands / data connection
17
See the u-blox AT Commands Manual [3] for the definition of the interface data mode, command mode and online command mode.