Integration Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.5.1.1 VCC or 3.3Vaux supply requirements
- 1.5.1.2 VCC or 3.3Vaux current consumption in 2G connected-mode
- 1.5.1.3 VCC or 3.3Vaux current consumption in 3G connected mode
- 1.5.1.4 VCC or 3.3Vaux current consumption in LTE connected-mode
- 1.5.1.5 VCC or 3.3Vaux current consumption in cyclic idle/active mode (power saving enabled)
- 1.5.1.6 VCC or 3.3Vaux current consumption in fixed active-mode (power saving disabled)
- 1.5.2 RTC supply input/output (V_BCKP)
- 1.5.3 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 1.13 Reserved pins (RSVD)
- 1.14 Not connected pins (NC)
- 1.15 System features
- 1.15.1 Network indication
- 1.15.2 Antenna supervisor
- 1.15.3 Jamming detection
- 1.15.4 IP modes of operation
- 1.15.5 Dual stack IPv4/IPv6
- 1.15.6 TCP/IP and UDP/IP
- 1.15.7 FTP
- 1.15.8 HTTP
- 1.15.9 SSL / TLS
- 1.15.10 Bearer Independent Protocol
- 1.15.11 Wi-Fi integration
- 1.15.12 Firmware update Over AT (FOAT)
- 1.15.13 Firmware update Over The Air (FOTA)
- 1.15.14 Smart temperature management
- 1.15.15 SIM Access Profile (SAP)
- 1.15.16 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.2.1.1 General guidelines for VCC or 3.3Vaux supply circuit selection and design
- 2.2.1.2 Guidelines for VCC or 3.3Vaux supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC or 3.3Vaux supply circuit design using a Low Drop-Out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC or 3.3Vaux supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC or 3.3Vaux supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply output (V_BCKP)
- 2.2.3 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio interface
- 2.8 General Purpose Input/Output
- 2.9 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 TOBY-L2 series module footprint and paste mask
- 2.13 MPCI-L2 series module installation
- 2.14 Thermal guidelines
- 2.15 ESD guidelines
- 2.16 Schematic for TOBY-L2 and MPCI-L2 series module integration
- 2.17 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science and Economic Development Canada notice
- 4.4 Brazilian Anatel certification
- 4.5 European Conformance CE mark
- 4.6 Australian Regulatory Compliance Mark
- 4.7 Taiwanese NCC certification
- 4.8 Japanese Giteki certification
- 5 Product testing
- Appendix
- A Migration between TOBY-L1 and TOBY-L2
- B Glossary
- Related documents
- Revision history
- Contact
TOBY-L2 and MPCI-L2 series - System Integration Manual
UBX-13004618 - R26 System description
Page 54 of 162
The module automatically enters the low power idle-mode whenever possible but it wakes up to active-mode
according to any required activity related to the network (e.g. for the periodic paging reception described in section
1.5.1.5, or for any other required RF signal transmission or reception) or any other required activity related to the
functions / interfaces of the module.
The AT+UPSV=3 configuration can be enabled regardless the flow control setting on UART. In particular, the HW
flow control can be enabled (AT&K3) or disabled (AT&K0) on UART during this configuration. In both cases, with
the AT+UPSV=3 configuration, the CTS line indicates when the module is either able or not able to accept data
from the DTE over the UART.
When the AT+UPSV=3 configuration is enabled, the DTR input line can still be used by the DTE to control the
module behavior according to AT&D command configuration (see u-blox AT commands Manual [3]).
Wake up via data reception
The UART wake up via data reception consists of a special configuration of the module TXD input line that causes
the system wake-up when a low-to-high transition occurs on the TXD input line. In particular, the UART is enabled
and the module switches from the low power idle-mode to active-mode within ~5 ms from the first character
received: this is the system “wake up time”.
As a consequence, the first character sent by the DTE when the UART is disabled (i.e. the wake up character) is
not a valid communication character even if the wake up via data reception configuration is active, because it
cannot be recognized, and the recognition of the subsequent characters is guaranteed only after the complete
system wake-up (i.e. after ~5 ms).
The TXD input line is configured to wake up the system via data reception in the following case:
AT+UPSV=1 is set with HW flow control disabled
The TXD input line on “01”, “60” and TOBY-L201-02S modules product versions is additionally configured to
wake up the system via data reception in the following cases:
AT+UPSV=2 is set with HW flow control disabled, and the RTS line is set OFF
AT+UPSV=3 is set with HW flow control disabled, and the DTR line is set OFF
Figure 24 and Figure 25 show examples of common scenarios and timing constraints:
AT+UPSV=1 power saving configuration is active and the timeout from last data received to idle-mode start is
set to 2000 frames (AT+UPSV=1,2000)
Hardware flow control is disabled
Figure 24 shows the case where the module UART is disabled and only a wake-up is forced. In this scenario the
only character sent by the DTE is the wake-up character; as a consequence, the DCE module UART is disabled
when the timeout from last data received expires (2000 frames without data reception, as the default case).
Wake up character
Not recognized by DCE
OFF
ON
DCE UART is enabled for 2000 GSM frames (~9.2 s)
time
Wake up time: ~5 ms
time
TXD input
UART
OFF
ON
Figure 24: Wake-up via data reception without further communication