Integration Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.5.1.1 VCC or 3.3Vaux supply requirements
- 1.5.1.2 VCC or 3.3Vaux current consumption in 2G connected-mode
- 1.5.1.3 VCC or 3.3Vaux current consumption in 3G connected mode
- 1.5.1.4 VCC or 3.3Vaux current consumption in LTE connected-mode
- 1.5.1.5 VCC or 3.3Vaux current consumption in cyclic idle/active mode (power saving enabled)
- 1.5.1.6 VCC or 3.3Vaux current consumption in fixed active-mode (power saving disabled)
- 1.5.2 RTC supply input/output (V_BCKP)
- 1.5.3 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 1.13 Reserved pins (RSVD)
- 1.14 Not connected pins (NC)
- 1.15 System features
- 1.15.1 Network indication
- 1.15.2 Antenna supervisor
- 1.15.3 Jamming detection
- 1.15.4 IP modes of operation
- 1.15.5 Dual stack IPv4/IPv6
- 1.15.6 TCP/IP and UDP/IP
- 1.15.7 FTP
- 1.15.8 HTTP
- 1.15.9 SSL / TLS
- 1.15.10 Bearer Independent Protocol
- 1.15.11 Wi-Fi integration
- 1.15.12 Firmware update Over AT (FOAT)
- 1.15.13 Firmware update Over The Air (FOTA)
- 1.15.14 Smart temperature management
- 1.15.15 SIM Access Profile (SAP)
- 1.15.16 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.2.1.1 General guidelines for VCC or 3.3Vaux supply circuit selection and design
- 2.2.1.2 Guidelines for VCC or 3.3Vaux supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC or 3.3Vaux supply circuit design using a Low Drop-Out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC or 3.3Vaux supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC or 3.3Vaux supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply output (V_BCKP)
- 2.2.3 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio interface
- 2.8 General Purpose Input/Output
- 2.9 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 TOBY-L2 series module footprint and paste mask
- 2.13 MPCI-L2 series module installation
- 2.14 Thermal guidelines
- 2.15 ESD guidelines
- 2.16 Schematic for TOBY-L2 and MPCI-L2 series module integration
- 2.17 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science and Economic Development Canada notice
- 4.4 Brazilian Anatel certification
- 4.5 European Conformance CE mark
- 4.6 Australian Regulatory Compliance Mark
- 4.7 Taiwanese NCC certification
- 4.8 Japanese Giteki certification
- 5 Product testing
- Appendix
- A Migration between TOBY-L1 and TOBY-L2
- B Glossary
- Related documents
- Revision history
- Contact
TOBY-L2 and MPCI-L2 series - System Integration Manual
UBX-13004618 - R26 System description
Page 53 of 162
The CTS output line is driven to the ON or OFF state when the module is either able or not able to accept data
from the DTE over the UART: Figure 23 illustrates the CTS output line toggling due to paging reception and data
received over the UART, with AT+UPSV=1 configuration.
time [s]
~9.2 s (default)
Data input
CTS ON
CTS OFF
Figure 23: CTS output pin indicates when module’s UART is enabled (CTS = ON = low level) or disabled (CTS = OFF = high level)
AT+UPSV=2: power saving enabled and controlled by the RTS line
This configuration can only be enabled with the module hardware flow control disabled (i.e. AT&K0 setting).
The UART interface is disabled after the DTE sets the RTS line to OFF.
Afterwards, the UART is enabled again, and the module does not enter low power idle-mode, as following:
If an OFF-to-ON transition occurs on the RTS input line, this causes the UART / module wake-up after ~5 ms:
recognition of subsequent characters is guaranteed only after the complete wake-up, and the UART is kept
enabled as long as the RTS input line is set to ON.
If the module needs to transmit some data (e.g. URC), the UART is temporarily enabled to send data
If the DTE sends data, the first character sent causes the wake-up of UART / module product versions “01”,
“60” and TOBY-L201-02S after ~5 ms: recognition of subsequent characters is guaranteed only after the
complete wake-up, and the UART will be then kept enabled after last data received according to the timeout
previously set with AT+UPSV=1 configuration (see following subsection “wake up via data reception”)
The module automatically enters the low power idle-mode whenever possible but it wakes up to active-mode
according to any required activity related to the network (e.g. for the periodic paging reception described in section
1.5.1.5, or for any other required RF transmission / reception) or any other required activity related to the module
functions / interfaces (including the UART itself).
The hardware flow-control output (CTS line) indicates when the module is either able or not able to accept data
from the DTE over the UART, even if hardware flow control is disabled with AT+UPSV=2 configuration.
AT+UPSV=3: power saving enabled and controlled by the DTR line
The UART interface is disabled after the DTE sets the DTR line to OFF.
Afterwards, the UART is enabled again, and the module does not enter low power idle-mode, as following:
If an OFF-to-ON transition occurs on the DTR input line, this causes the UART / module wake-up after ~5 ms:
recognition of subsequent characters is guaranteed only after the complete wake-up, and the UART is kept
enabled as long as the DTR input line is set to ON
If the module needs to transmit some data (e.g. URC), the UART is temporarily enabled to send data
If the DTE sends data, the first character sent causes the wake-up of UART / module product versions “01”,
“60” and TOBY-L201-02S after ~5 ms: recognition of subsequent characters is guaranteed only after the
complete wake-up, and the UART will be then kept enabled after last data received according to the timeout
previously set with AT+UPSV=1 configuration (see following subsection “wake up via data reception”)