Integration Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.5.1.1 VCC or 3.3Vaux supply requirements
- 1.5.1.2 VCC or 3.3Vaux current consumption in 2G connected-mode
- 1.5.1.3 VCC or 3.3Vaux current consumption in 3G connected mode
- 1.5.1.4 VCC or 3.3Vaux current consumption in LTE connected-mode
- 1.5.1.5 VCC or 3.3Vaux current consumption in cyclic idle/active mode (power saving enabled)
- 1.5.1.6 VCC or 3.3Vaux current consumption in fixed active-mode (power saving disabled)
- 1.5.2 RTC supply input/output (V_BCKP)
- 1.5.3 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 1.13 Reserved pins (RSVD)
- 1.14 Not connected pins (NC)
- 1.15 System features
- 1.15.1 Network indication
- 1.15.2 Antenna supervisor
- 1.15.3 Jamming detection
- 1.15.4 IP modes of operation
- 1.15.5 Dual stack IPv4/IPv6
- 1.15.6 TCP/IP and UDP/IP
- 1.15.7 FTP
- 1.15.8 HTTP
- 1.15.9 SSL / TLS
- 1.15.10 Bearer Independent Protocol
- 1.15.11 Wi-Fi integration
- 1.15.12 Firmware update Over AT (FOAT)
- 1.15.13 Firmware update Over The Air (FOTA)
- 1.15.14 Smart temperature management
- 1.15.15 SIM Access Profile (SAP)
- 1.15.16 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.2.1.1 General guidelines for VCC or 3.3Vaux supply circuit selection and design
- 2.2.1.2 Guidelines for VCC or 3.3Vaux supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC or 3.3Vaux supply circuit design using a Low Drop-Out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC or 3.3Vaux supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC or 3.3Vaux supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply output (V_BCKP)
- 2.2.3 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio interface
- 2.8 General Purpose Input/Output
- 2.9 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 TOBY-L2 series module footprint and paste mask
- 2.13 MPCI-L2 series module installation
- 2.14 Thermal guidelines
- 2.15 ESD guidelines
- 2.16 Schematic for TOBY-L2 and MPCI-L2 series module integration
- 2.17 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science and Economic Development Canada notice
- 4.4 Brazilian Anatel certification
- 4.5 European Conformance CE mark
- 4.6 Australian Regulatory Compliance Mark
- 4.7 Taiwanese NCC certification
- 4.8 Japanese Giteki certification
- 5 Product testing
- Appendix
- A Migration between TOBY-L1 and TOBY-L2
- B Glossary
- Related documents
- Revision history
- Contact
TOBY-L2 and MPCI-L2 series - System Integration Manual
UBX-13004618 - R26 System description
Page 23 of 162
1.5 Supply interfaces
1.5.1 Module supply input (VCC or 3.3Vaux)
TOBY-L2 modules are supplied via the three VCC pins, and MPCI-L2 modules are supplied via the five 3.3Vaux
pins. All supply voltages used inside the modules are generated from the VCC or the 3.3Vaux supply input by
integrated voltage regulators, including the V_BCKP RTC supply, the V_INT generic digital interface supply, and
the VSIM or UIM_PWR SIM interface supply.
The current drawn by the TOBY-L2 and MPCI-L2 series modules through the VCC or 3.3Vaux pins can vary by
several orders of magnitude depending on radio access technology, operation mode and state. It is important that
the supply source is able to support both the high peak of current consumption during 2G transmission at
maximum RF power level (as described in the section 1.5.1.2) and the high average current consumption during
3G and LTE transmission at maximum RF power level (as described in the sections 1.5.1.3 and 1.5.1.4).
1.5.1.1 VCC or 3.3Vaux supply requirements
Table 7 summarizes the requirements for the VCC or 3.3Vaux modules supply. See section 2.2.1 for suggestions
to properly design a VCC or 3.3Vaux supply circuit compliant with the requirements listed in Table 7.
The supply circuit affects the RF compliance of the device integrating TOBY-L2 and MPCI-L2 series
modules with applicable required certification schemes as well as antenna circuit design.
Compliance is guaranteed if the requirements summarized in the Table 7 are fulfilled.
Item
Requirement
Remark
VCC or 3.3Vaux
nominal voltage
Within VCC or 3.3Vaux normal operating range:
See “Supply/Power pins” section in the TOBY-L2 Data
Sheet [1] or in the MPCI-L2 Data Sheet [2].
The modules cannot be switched on if the supply voltage
is below the normal operating range minimum limit.
VCC or 3.3Vaux
voltage during
normal operation
Within VCC or 3.3Vaux extended operating range:
See “Supply/Power pins” section in the TOBY-L2 Data
Sheet [1] or in the MPCI-L2 Data Sheet [2].
The modules may switch off if the supply voltage drops
below the extended operating range minimum limit.
VCC or 3.3Vaux
average current
Support with adequate margin the highest averaged
current consumption value in connected-mode
conditions specified for VCC in TOBY-L2 Data Sheet [1]
or specified for 3.3Vaux in MPCI-L2 Data Sheet [2].
The maximum average current consumption can be
greater than the specified value according to the actual
antenna mismatching, temperature and supply voltage.
Sections 1.5.1.2, 1.5.1.3 and 1.5.1.4 describe current
consumption profiles in 2G, 3G and LTE connected-mode.
VCC or 3.3Vaux
peak current
Support with margin the highest peak current
consumption value in 2G connected-mode conditions
specified for VCC in TOBY-L2 Data Sheet [1] or
specified for 3.3Vaux in MPCI-L2 Data Sheet [2].
The specified maximum peak of current consumption
occurs during GSM single transmit slot in 850/900 MHz
connected-mode, in case of mismatched antenna.
Section 1.5.1.2 describes 2G Tx peak/pulse current.
VCC or 3.3Vaux
voltage drop during
2G Tx slots
Lower than 400 mV
Supply voltage drop values greater than recommended
during 2G TDMA transmission slots directly affect the RF
compliance with applicable certification schemes.
Figure 5 describes supply voltage drop during 2G Tx slots.
VCC or 3.3Vaux
voltage ripple during
RF transmission
Noise in the supply has to be minimized
High supply voltage ripple values during LTE/3G/2G RF
transmissions in connected-mode directly affect the RF
compliance with applicable certification schemes.
Figure 5 describes supply voltage ripple during RF Tx.
VCC or 3.3Vaux
under/over-shoot at
start/end of Tx slots
Absent or at least minimized
Supply voltage under-shoot or over-shoot at the start or
the end of 2G TDMA transmission slots directly affect the
RF compliance with applicable certification schemes.
Figure 5 describes supply voltage under/over-shoot
Table 7: Summary of VCC or 3.3Vaux modules supply requirements