Integration Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.5.1.1 VCC or 3.3Vaux supply requirements
- 1.5.1.2 VCC or 3.3Vaux current consumption in 2G connected-mode
- 1.5.1.3 VCC or 3.3Vaux current consumption in 3G connected mode
- 1.5.1.4 VCC or 3.3Vaux current consumption in LTE connected-mode
- 1.5.1.5 VCC or 3.3Vaux current consumption in cyclic idle/active mode (power saving enabled)
- 1.5.1.6 VCC or 3.3Vaux current consumption in fixed active-mode (power saving disabled)
- 1.5.2 RTC supply input/output (V_BCKP)
- 1.5.3 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 1.13 Reserved pins (RSVD)
- 1.14 Not connected pins (NC)
- 1.15 System features
- 1.15.1 Network indication
- 1.15.2 Antenna supervisor
- 1.15.3 Jamming detection
- 1.15.4 IP modes of operation
- 1.15.5 Dual stack IPv4/IPv6
- 1.15.6 TCP/IP and UDP/IP
- 1.15.7 FTP
- 1.15.8 HTTP
- 1.15.9 SSL / TLS
- 1.15.10 Bearer Independent Protocol
- 1.15.11 Wi-Fi integration
- 1.15.12 Firmware update Over AT (FOAT)
- 1.15.13 Firmware update Over The Air (FOTA)
- 1.15.14 Smart temperature management
- 1.15.15 SIM Access Profile (SAP)
- 1.15.16 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.2.1.1 General guidelines for VCC or 3.3Vaux supply circuit selection and design
- 2.2.1.2 Guidelines for VCC or 3.3Vaux supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC or 3.3Vaux supply circuit design using a Low Drop-Out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC or 3.3Vaux supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC or 3.3Vaux supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply output (V_BCKP)
- 2.2.3 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio interface
- 2.8 General Purpose Input/Output
- 2.9 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 TOBY-L2 series module footprint and paste mask
- 2.13 MPCI-L2 series module installation
- 2.14 Thermal guidelines
- 2.15 ESD guidelines
- 2.16 Schematic for TOBY-L2 and MPCI-L2 series module integration
- 2.17 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science and Economic Development Canada notice
- 4.4 Brazilian Anatel certification
- 4.5 European Conformance CE mark
- 4.6 Australian Regulatory Compliance Mark
- 4.7 Taiwanese NCC certification
- 4.8 Japanese Giteki certification
- 5 Product testing
- Appendix
- A Migration between TOBY-L1 and TOBY-L2
- B Glossary
- Related documents
- Revision history
- Contact
TOBY-L2 and MPCI-L2 series - System Integration Manual
UBX-13004618 - R26 Approvals
Page 140 of 162
4 Approvals
For the complete list and details regarding all the certification schemes approvals of TOBY-L2 and MPCI-L2
series modules, see the TOBY-L2 Data Sheet [1] and the MPCI-L2 Data Sheet [2], or visit our website
(www.u-blox.com), or please contact the u-blox office or sales representative nearest you.
4.1 Product certification approval overview
Product certification approval is the process of certifying that a product has passed all tests and criteria required
by specifications, typically called “certification schemes” that can be divided into three distinct categories:
Regulatory certification
o Country specific approval required by local government in most regions and countries, such as:
CE (Conformité Européenne) marking for European Union
FCC (Federal Communications Commission) approval for United States
Industry certification
o Telecom industry specific approval verifying the interoperability between devices and networks:
GCF (Global Certification Forum), partnership between European device manufacturers and
network operators to ensure and verify global interoperability between devices and networks
PTCRB (PCS Type Certification Review Board), created by United States network operators to
ensure and verify interoperability between devices and North America networks
Operator certification
o Operator specific approval required by some mobile network operator, such as:
AT&T network operator in United States
Even if TOBY-L2 and MPCI-L2 series modules are approved under all major certification schemes, the application
device that integrates TOBY-L2 and MPCI-L2 series modules must be approved under all the certification schemes
required by the specific application device to be deployed in the market.
The required certification scheme approvals and relative testing specifications differ depending on the country or
the region where the device that integrates TOBY-L2 and MPCI-L2 series modules must be deployed, on the relative
vertical market of the device, on type, features and functionalities of the whole application device, and on the
network operators where the device must operate.
Check the appropriate applicability of the TOBY-L2 / MPCI-L2 module’s approvals while starting the
certification process of the device integrating the module: the re-use of the u-blox cellular module’s approval
can significantly reduce the cost and time to market of the application device certification.
The certification of the application device that integrates a TOBY-L2 module or a MPCI-L2 module and the
compliance of the application device with all the applicable certification schemes, directives and standards
are the sole responsibility of the application device manufacturer.
TOBY-L2 and MPCI-L2 series modules are certified according to all capabilities and options stated in the Protocol
Implementation Conformance Statement document (PICS) of the module. The PICS, according to the 3GPP TS
51.010-2 [21], 3GPP TS 34.121-2 [22], 3GPP TS 36.521-2 [24] and 3GPP TS 36.523-2 [25], is a statement of the
implemented and supported capabilities and options of a device.
The PICS document of the application device integrating TOBY-L2 and MPCI-L2 series modules must be
updated from the module PICS statement if any feature stated as supported by the module in its PICS
document is not implemented or disabled in the application device. For more details regarding the AT
commands settings that affect the PICS, see the u-blox AT Commands Manual [3].
Check the specific settings required for mobile network operators approvals as they may differ from the AT
commands settings defined in the module as integrated in the application device.