Integration Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.5.1.1 VCC or 3.3Vaux supply requirements
- 1.5.1.2 VCC or 3.3Vaux current consumption in 2G connected-mode
- 1.5.1.3 VCC or 3.3Vaux current consumption in 3G connected mode
- 1.5.1.4 VCC or 3.3Vaux current consumption in LTE connected-mode
- 1.5.1.5 VCC or 3.3Vaux current consumption in cyclic idle/active mode (power saving enabled)
- 1.5.1.6 VCC or 3.3Vaux current consumption in fixed active-mode (power saving disabled)
- 1.5.2 RTC supply input/output (V_BCKP)
- 1.5.3 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 1.13 Reserved pins (RSVD)
- 1.14 Not connected pins (NC)
- 1.15 System features
- 1.15.1 Network indication
- 1.15.2 Antenna supervisor
- 1.15.3 Jamming detection
- 1.15.4 IP modes of operation
- 1.15.5 Dual stack IPv4/IPv6
- 1.15.6 TCP/IP and UDP/IP
- 1.15.7 FTP
- 1.15.8 HTTP
- 1.15.9 SSL / TLS
- 1.15.10 Bearer Independent Protocol
- 1.15.11 Wi-Fi integration
- 1.15.12 Firmware update Over AT (FOAT)
- 1.15.13 Firmware update Over The Air (FOTA)
- 1.15.14 Smart temperature management
- 1.15.15 SIM Access Profile (SAP)
- 1.15.16 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.2.1.1 General guidelines for VCC or 3.3Vaux supply circuit selection and design
- 2.2.1.2 Guidelines for VCC or 3.3Vaux supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC or 3.3Vaux supply circuit design using a Low Drop-Out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC or 3.3Vaux supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC or 3.3Vaux supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply output (V_BCKP)
- 2.2.3 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio interface
- 2.8 General Purpose Input/Output
- 2.9 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 TOBY-L2 series module footprint and paste mask
- 2.13 MPCI-L2 series module installation
- 2.14 Thermal guidelines
- 2.15 ESD guidelines
- 2.16 Schematic for TOBY-L2 and MPCI-L2 series module integration
- 2.17 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science and Economic Development Canada notice
- 4.4 Brazilian Anatel certification
- 4.5 European Conformance CE mark
- 4.6 Australian Regulatory Compliance Mark
- 4.7 Taiwanese NCC certification
- 4.8 Japanese Giteki certification
- 5 Product testing
- Appendix
- A Migration between TOBY-L1 and TOBY-L2
- B Glossary
- Related documents
- Revision history
- Contact
TOBY-L2 and MPCI-L2 series - System Integration Manual
UBX-13004618 - R26 Design-in
Page 117 of 162
Reference
Description
Part Number – Manufacturer
C11, C12, C13, C14
10 nF Capacitor Ceramic X5R 0402 10% 50V
GRM155R71C103KA88 – Murata
D1, D2
Low Capacitance ESD Protection
USB0002RP or USB0002DP – AVX
EMI1, EMI2, EMI3,
EMI4
Chip Ferrite Bead Noise/EMI Suppression Filter
1800 Ohm at 100 MHz, 2700 Ohm at 1 GHz
BLM15HD182SN1 – Murata
J1
Microphone Connector
Various manufacturers
J2
Speaker Connector
Various manufacturers
MIC
2.2 k Electret Microphone
Various manufacturers
R1, R2
4.7 k Resistor 0402 5% 0.1 W
RC0402JR-074K7L - Yageo Phycomp
R3
10 k Resistor 0402 5% 0.1 W
RC0402JR-0710KL - Yageo Phycomp
R4, R5
2.2 k Resistor 0402 5% 0.1 W
RC0402JR-072K2L – Yageo Phycomp
SPK
32 Speaker
Various manufacturers
U1
16-Bit Mono Audio Voice Codec
MAX9860ETG+ - Maxim
Table 45: Example of components for audio voice codec application circuit
Do not apply voltage to any I
2
S pin before the switch-on of I
2
S supply source (V_INT), to avoid latch-up of
circuits and allow a proper boot of the module. If the external signals connected to the cellular module
cannot be tri-stated or set low, insert a multi channel digital switch (e.g. TI SN74CB3Q16244, TS5A3159,
or TS5A63157) between the two-circuit connections and set to high impedance before V_INT switch-on.
ESD sensitivity rating of I
2
S interface pins is 1 kV (Human Body Model according to JESD22-A114). Higher
protection level could be required if the lines are externally accessible and it can be achieved by mounting
a general purpose ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to accessible points.
If the I
2
S digital audio pins are not used, they can be left unconnected on the application board.
2.7.1.2 Guidelines for digital audio layout design
I
2
S interface and clock output lines require the same consideration regarding electro-magnetic interference as any
other high speed digital interface. Keep the traces short and avoid coupling with RF lines / parts or sensitive analog
inputs, since the signals can cause the radiation of some harmonics of the digital data frequency.
2.7.1.3 Guidelines for analog audio layout design
Accurate design of the analog audio circuit is very important to obtain clear and high quality audio. The GSM
signal burst has a repetition rate of 217 Hz that lies in the audible range. A careful layout is required to reduce the
risk of noise from audio lines due to both VCC burst noise coupling and RF detection.
General guidelines for the uplink path (microphone), which is commonly the most sensitive, are the following:
Avoid coupling of any noisy signal to microphone lines: it is strongly recommended to route microphone lines
away from module VCC supply line, any switching regulator line, RF antenna lines, digital lines and any other
possible noise source.
Avoid coupling between microphone and speaker / receiver lines.
Optimize the mechanical design of the application device, the position, orientation and mechanical fixing (for
example, using rubber gaskets) of microphone and speaker parts in order to avoid echo interference between
uplink path and downlink path.
Keep ground separation from microphone lines to other noisy signals. Use an intermediate ground layer or
vias wall for coplanar signals.
In case of external audio device providing differential microphone input, route microphone signal lines as a
differential pair embedded in ground to reduce differential noise pick-up. The balanced configuration will help
reject the common mode noise.