Integration Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.5.1.1 VCC or 3.3Vaux supply requirements
- 1.5.1.2 VCC or 3.3Vaux current consumption in 2G connected-mode
- 1.5.1.3 VCC or 3.3Vaux current consumption in 3G connected mode
- 1.5.1.4 VCC or 3.3Vaux current consumption in LTE connected-mode
- 1.5.1.5 VCC or 3.3Vaux current consumption in cyclic idle/active mode (power saving enabled)
- 1.5.1.6 VCC or 3.3Vaux current consumption in fixed active-mode (power saving disabled)
- 1.5.2 RTC supply input/output (V_BCKP)
- 1.5.3 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 1.13 Reserved pins (RSVD)
- 1.14 Not connected pins (NC)
- 1.15 System features
- 1.15.1 Network indication
- 1.15.2 Antenna supervisor
- 1.15.3 Jamming detection
- 1.15.4 IP modes of operation
- 1.15.5 Dual stack IPv4/IPv6
- 1.15.6 TCP/IP and UDP/IP
- 1.15.7 FTP
- 1.15.8 HTTP
- 1.15.9 SSL / TLS
- 1.15.10 Bearer Independent Protocol
- 1.15.11 Wi-Fi integration
- 1.15.12 Firmware update Over AT (FOAT)
- 1.15.13 Firmware update Over The Air (FOTA)
- 1.15.14 Smart temperature management
- 1.15.15 SIM Access Profile (SAP)
- 1.15.16 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.2.1.1 General guidelines for VCC or 3.3Vaux supply circuit selection and design
- 2.2.1.2 Guidelines for VCC or 3.3Vaux supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC or 3.3Vaux supply circuit design using a Low Drop-Out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC or 3.3Vaux supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC or 3.3Vaux supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply output (V_BCKP)
- 2.2.3 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio interface
- 2.8 General Purpose Input/Output
- 2.9 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 TOBY-L2 series module footprint and paste mask
- 2.13 MPCI-L2 series module installation
- 2.14 Thermal guidelines
- 2.15 ESD guidelines
- 2.16 Schematic for TOBY-L2 and MPCI-L2 series module integration
- 2.17 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science and Economic Development Canada notice
- 4.4 Brazilian Anatel certification
- 4.5 European Conformance CE mark
- 4.6 Australian Regulatory Compliance Mark
- 4.7 Taiwanese NCC certification
- 4.8 Japanese Giteki certification
- 5 Product testing
- Appendix
- A Migration between TOBY-L1 and TOBY-L2
- B Glossary
- Related documents
- Revision history
- Contact
TOBY-L2 and MPCI-L2 series - System Integration Manual
UBX-13004618 - R26 System description
Page 64 of 162
1.15.11 Wi-Fi integration
u-blox short range communication Wi-Fi modules integration is not available for MPCI-L2 series modules.
u-blox short range communication Wi-Fi modules integration is not supported by the TOBY-L2 series
modules “00”, “01” and “60” product versions.
Full access to u-blox short range communication Wi-Fi modules is available through a dedicated SDIO interface
(see sections 1.9.4 and 2.6.4). This means that combining a TOBY-L2 series cellular module with a u-blox short
range communication module gives designers full access to the Wi-Fi module directly via the cellular module, so
that a second interface connected to the Wi-Fi module is not necessary.
AT commands via the AT interfaces of the cellular module (UART, USB) allows a full control of the Wi-Fi module
from any host processor, because Wi-Fi control messages are relayed to the Wi-Fi module via the dedicated SDIO
interface (for more details, see the Wi-Fi AT commands in the u-blox AT Commands Manual [3]).
All the management software for Wi-Fi module operations runs inside the cellular module in addition to those
required for cellular-only operation: Wi-Fi driver, Web User Interface (WebUI), Connection Config Manager.
For more details, see the Wi-Fi / Cellular Integration Application Note [15].
1.15.12 Firmware update Over AT (FOAT)
This feature allows upgrading the module firmware over USB / UART serial interfaces, using AT commands.
The +UFWUPD AT command triggers a reboot followed by the upgrade procedure at specified a baud rate
A special boot loader on the module performs firmware installation, security verifications and module reboot
Firmware authenticity verification is performed via a security signature during the download. The firmware is
then installed, overwriting the current version. In case of power loss during this phase, the boot loader detects
a fault at the next wake-up, and restarts the firmware download. After completing the upgrade, the module
is reset again and wakes-up in normal boot
For more details about Firmware update Over AT procedure see the Firmware Update Application Note [6] and
the u-blox AT Commands Manual [3], +UFWUPD AT command.
1.15.13 Firmware update Over The Air (FOTA)
Firmware update Over The Air (FOTA) is not supported by “00” and “60” product versions.
This feature allows upgrading the module firmware over the LTE/3G/2G air interface.
In order to reduce the amount of data to be transmitted over the air, the implemented FOTA feature requires
downloading only a “delta file” instead of the full firmware. The delta file contains only the differences between
the two firmware versions (old and new), and is compressed. The firmware update procedure can be triggered
using dedicated AT command with the delta file stored in the module file system via over the air FTP.
For more details about Firmware update Over The Air procedure see the Firmware Update Application Note [6]
and the u-blox AT Commands Manual [3], +UFWINSTALL AT command.