Integration Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.5.1.1 VCC or 3.3Vaux supply requirements
- 1.5.1.2 VCC or 3.3Vaux current consumption in 2G connected-mode
- 1.5.1.3 VCC or 3.3Vaux current consumption in 3G connected mode
- 1.5.1.4 VCC or 3.3Vaux current consumption in LTE connected-mode
- 1.5.1.5 VCC or 3.3Vaux current consumption in cyclic idle/active mode (power saving enabled)
- 1.5.1.6 VCC or 3.3Vaux current consumption in fixed active-mode (power saving disabled)
- 1.5.2 RTC supply input/output (V_BCKP)
- 1.5.3 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 1.13 Reserved pins (RSVD)
- 1.14 Not connected pins (NC)
- 1.15 System features
- 1.15.1 Network indication
- 1.15.2 Antenna supervisor
- 1.15.3 Jamming detection
- 1.15.4 IP modes of operation
- 1.15.5 Dual stack IPv4/IPv6
- 1.15.6 TCP/IP and UDP/IP
- 1.15.7 FTP
- 1.15.8 HTTP
- 1.15.9 SSL / TLS
- 1.15.10 Bearer Independent Protocol
- 1.15.11 Wi-Fi integration
- 1.15.12 Firmware update Over AT (FOAT)
- 1.15.13 Firmware update Over The Air (FOTA)
- 1.15.14 Smart temperature management
- 1.15.15 SIM Access Profile (SAP)
- 1.15.16 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.2.1.1 General guidelines for VCC or 3.3Vaux supply circuit selection and design
- 2.2.1.2 Guidelines for VCC or 3.3Vaux supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC or 3.3Vaux supply circuit design using a Low Drop-Out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC or 3.3Vaux supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC or 3.3Vaux supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply output (V_BCKP)
- 2.2.3 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio interface
- 2.8 General Purpose Input/Output
- 2.9 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 TOBY-L2 series module footprint and paste mask
- 2.13 MPCI-L2 series module installation
- 2.14 Thermal guidelines
- 2.15 ESD guidelines
- 2.16 Schematic for TOBY-L2 and MPCI-L2 series module integration
- 2.17 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science and Economic Development Canada notice
- 4.4 Brazilian Anatel certification
- 4.5 European Conformance CE mark
- 4.6 Australian Regulatory Compliance Mark
- 4.7 Taiwanese NCC certification
- 4.8 Japanese Giteki certification
- 5 Product testing
- Appendix
- A Migration between TOBY-L1 and TOBY-L2
- B Glossary
- Related documents
- Revision history
- Contact
TOBY-L2 and MPCI-L2 series - System Integration Manual
UBX-13004618 - R26 System description
Page 63 of 162
Algorithm
PSK
YES
Table 16: Authentication
Algorithm
RC4
NO
DES
YES
3DES
YES
AES128
YES
AES256
YES
Table 17: Encryption
Algorithm
MD5
NO
SHA/SHA1
YES
SHA256
YES
SHA384
YES
Table 18: Message digest
Description
Registry value
TLS_RSA_WITH_AES_128_CBC_SHA
0x00,0x2F
YES
TLS_RSA_WITH_AES_128_CBC_SHA256
0x00,0x3C
YES
TLS_RSA_WITH_AES_256_CBC_SHA
0x00,0x35
YES
TLS_RSA_WITH_AES_256_CBC_SHA256
0x00,0x3D
YES
TLS_RSA_WITH_3DES_EDE_CBC_SHA
0x00,0x0A
YES
TLS_RSA_WITH_RC4_128_MD5
0x00,0x04
NO
TLS_RSA_WITH_RC4_128_SHA
0x00,0x05
NO
TLS_PSK_WITH_AES_128_CBC_SHA
0x00,0x8C
YES
TLS_PSK_WITH_AES_256_CBC_SHA
0x00,0x8D
YES
TLS_PSK_WITH_3DES_EDE_CBC_SHA
0x00,0x8B
YES
TLS_RSA_PSK_WITH_AES_128_CBC_SHA
0x00,0x94
YES
TLS_RSA_PSK_WITH_AES_256_CBC_SHA
0x00,0x95
YES
TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA
0x00,0x93
YES
TLS_PSK_WITH_AES_128_CBC_SHA256
0x00,0xAE
YES
TLS_PSK_WITH_AES_256_CBC_SHA384
0x00,0xAF
YES
TLS_RSA_PSK_WITH_AES_128_CBC_SHA256
0x00,0xB6
YES
TLS_RSA_PSK_WITH_AES_256_CBC_SHA384
0x00,0xB7
YES
Table 19: TLS cipher suite registry
1.15.10 Bearer Independent Protocol
BIP is not supported by the “00”, “60” product versions.
The Bearer Independent Protocol (BIP) is a mechanism by which a cellular module provides a SIM with access to
the data bearers supported by the network. With the BIP for Over-the-Air SIM provisioning, the data transfer from
and to the SIM uses either an already active PDP context or a new PDP context established with the APN provided
by the SIM card. For more details, see the u-blox AT Commands Manual [3].