Integration Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.5.1.1 VCC or 3.3Vaux supply requirements
- 1.5.1.2 VCC or 3.3Vaux current consumption in 2G connected-mode
- 1.5.1.3 VCC or 3.3Vaux current consumption in 3G connected mode
- 1.5.1.4 VCC or 3.3Vaux current consumption in LTE connected-mode
- 1.5.1.5 VCC or 3.3Vaux current consumption in cyclic idle/active mode (power saving enabled)
- 1.5.1.6 VCC or 3.3Vaux current consumption in fixed active-mode (power saving disabled)
- 1.5.2 RTC supply input/output (V_BCKP)
- 1.5.3 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 1.13 Reserved pins (RSVD)
- 1.14 Not connected pins (NC)
- 1.15 System features
- 1.15.1 Network indication
- 1.15.2 Antenna supervisor
- 1.15.3 Jamming detection
- 1.15.4 IP modes of operation
- 1.15.5 Dual stack IPv4/IPv6
- 1.15.6 TCP/IP and UDP/IP
- 1.15.7 FTP
- 1.15.8 HTTP
- 1.15.9 SSL / TLS
- 1.15.10 Bearer Independent Protocol
- 1.15.11 Wi-Fi integration
- 1.15.12 Firmware update Over AT (FOAT)
- 1.15.13 Firmware update Over The Air (FOTA)
- 1.15.14 Smart temperature management
- 1.15.15 SIM Access Profile (SAP)
- 1.15.16 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.2.1.1 General guidelines for VCC or 3.3Vaux supply circuit selection and design
- 2.2.1.2 Guidelines for VCC or 3.3Vaux supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC or 3.3Vaux supply circuit design using a Low Drop-Out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC or 3.3Vaux supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC or 3.3Vaux supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply output (V_BCKP)
- 2.2.3 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio interface
- 2.8 General Purpose Input/Output
- 2.9 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 TOBY-L2 series module footprint and paste mask
- 2.13 MPCI-L2 series module installation
- 2.14 Thermal guidelines
- 2.15 ESD guidelines
- 2.16 Schematic for TOBY-L2 and MPCI-L2 series module integration
- 2.17 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science and Economic Development Canada notice
- 4.4 Brazilian Anatel certification
- 4.5 European Conformance CE mark
- 4.6 Australian Regulatory Compliance Mark
- 4.7 Taiwanese NCC certification
- 4.8 Japanese Giteki certification
- 5 Product testing
- Appendix
- A Migration between TOBY-L1 and TOBY-L2
- B Glossary
- Related documents
- Revision history
- Contact
TOBY-L2 and MPCI-L2 series - System Integration Manual
UBX-13004618 - R26 System description
Page 52 of 162
AT+UPSV
HW flow control
RTS line
DTR line
Communication during idle-mode and wake up
3
Enabled (AT&K3)
ON
ON
Data sent by the DTE is correctly received by the module.
Data sent by the module is correctly received by the DTE.
3
Enabled (AT&K3)
ON
OFF
Data sent by the DTE is buffered by the DTE and will be correctly received by
the module when it is ready to receive data (when the UART is enabled).
Data sent by the module is correctly received by the DTE.
3
Enabled (AT&K3)
OFF
ON
Data sent by the DTE is correctly received by the module.
Data sent by the module is buffered by the module and will be correctly
received by the DTE when it is ready to receive data (i.e. RTS line will be ON).
3
Enabled (AT&K3)
OFF
OFF
Data sent by the DTE is buffered by the DTE and will be correctly received by
the module when it is ready to receive data (when the UART is enabled).
Data sent by the module is buffered by the module and will be correctly
received by the DTE when it is ready to receive data (i.e. RTS line will be ON).
3
Disabled (AT&K0)
ON or OFF
ON
Data sent by the DTE is correctly received by the module.
Data sent by the module is correctly received by the DTE if it is ready to receive
data, otherwise data is lost.
3
Disabled (AT&K0)
ON or OFF
OFF
Data sent by the DTE is lost by the module
16
.
Data sent by the module is correctly received by the DTE if it is ready to receive
data, otherwise data is lost.
Table 12: UART and power-saving summary
AT+UPSV=0: power saving disabled, fixed active-mode
The module does not enter low power idle-mode and the UART interface is enabled (data can be sent and
received): the CTS line is always held in the ON state after UART initialization. This is the default configuration.
AT+UPSV=1: power saving enabled, cyclic idle/active-mode
When the AT+UPSV=1 command is issued by the DTE, the UART is disabled after the timeout set by the second
parameter of the +UPSV AT command (for more details see u-blox AT commands Manual [3]).
Afterwards, the UART is enabled again, and the module does not enter low power idle-mode, as following:
Periodically, for paging reception (see section 1.5.1.5) or other activities, to temporarily receive or send data
over the UART, e.g. data buffered by the DTE with HW flow control enabled will be correctly received
If the module needs to transmit some data (e.g. URC), the UART is temporarily enabled to send data
If the DTE send data with HW flow control disabled, the first character sent causes the UART and module
wake-up after ~5 ms: recognition of subsequent characters is guaranteed only after the complete wake-up
(see the following subsection “wake up via data reception”)
The module automatically enters the low power idle-mode whenever possible but it wakes up to active-mode
according to the UART periodic wake up so that the module cyclically enters the low power idle-mode and the
active-mode. Additionally, the module wakes up to active-mode according to any required activity related to the
network (e.g. for the periodic paging reception described in section 1.5.1.5, or for any other required RF Tx / Rx)
or any other required activity related to module functions / interfaces (including the UART itself).
When the UART interface is enabled, data can be received. When a character is received, it forces the UART
interface to stay enabled for a longer time and it forces the module to stay in the active-mode for a longer time,
according to the timeout configured by the second parameter of the +UPSV AT command. The timeout can be
set from 40 2G-frames (i.e. 40 x 4.615 ms = 184 ms) up to 65000 2G-frames (i.e. 65000 x 4.615 ms = 300 s).
Default value is 2000 2G-frames (i.e. 2000 x 4.615 ms = 9.2 s). Every subsequent character received during the
active-mode, resets and restarts the timer; hence the active-mode duration can be extended indefinitely.
16
Only the first character sent by the DTE is lost by ‘01’, ‘60’, TOBY-L201-02S product versions: the UART and the module are woken up after
~5 ms due to wake up via data reception, and recognition of subsequent characters is guaranteed after the UART / module wake-up