Integration Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.5.1.1 VCC or 3.3Vaux supply requirements
- 1.5.1.2 VCC or 3.3Vaux current consumption in 2G connected-mode
- 1.5.1.3 VCC or 3.3Vaux current consumption in 3G connected mode
- 1.5.1.4 VCC or 3.3Vaux current consumption in LTE connected-mode
- 1.5.1.5 VCC or 3.3Vaux current consumption in cyclic idle/active mode (power saving enabled)
- 1.5.1.6 VCC or 3.3Vaux current consumption in fixed active-mode (power saving disabled)
- 1.5.2 RTC supply input/output (V_BCKP)
- 1.5.3 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 1.13 Reserved pins (RSVD)
- 1.14 Not connected pins (NC)
- 1.15 System features
- 1.15.1 Network indication
- 1.15.2 Antenna supervisor
- 1.15.3 Jamming detection
- 1.15.4 IP modes of operation
- 1.15.5 Dual stack IPv4/IPv6
- 1.15.6 TCP/IP and UDP/IP
- 1.15.7 FTP
- 1.15.8 HTTP
- 1.15.9 SSL / TLS
- 1.15.10 Bearer Independent Protocol
- 1.15.11 Wi-Fi integration
- 1.15.12 Firmware update Over AT (FOAT)
- 1.15.13 Firmware update Over The Air (FOTA)
- 1.15.14 Smart temperature management
- 1.15.15 SIM Access Profile (SAP)
- 1.15.16 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.2.1.1 General guidelines for VCC or 3.3Vaux supply circuit selection and design
- 2.2.1.2 Guidelines for VCC or 3.3Vaux supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC or 3.3Vaux supply circuit design using a Low Drop-Out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC or 3.3Vaux supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC or 3.3Vaux supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply output (V_BCKP)
- 2.2.3 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio interface
- 2.8 General Purpose Input/Output
- 2.9 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 TOBY-L2 series module footprint and paste mask
- 2.13 MPCI-L2 series module installation
- 2.14 Thermal guidelines
- 2.15 ESD guidelines
- 2.16 Schematic for TOBY-L2 and MPCI-L2 series module integration
- 2.17 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science and Economic Development Canada notice
- 4.4 Brazilian Anatel certification
- 4.5 European Conformance CE mark
- 4.6 Australian Regulatory Compliance Mark
- 4.7 Taiwanese NCC certification
- 4.8 Japanese Giteki certification
- 5 Product testing
- Appendix
- A Migration between TOBY-L1 and TOBY-L2
- B Glossary
- Related documents
- Revision history
- Contact
TOBY-L2 and MPCI-L2 series - System Integration Manual
UBX-13004618 - R26 System description
Page 47 of 162
1.9.2.2 UART interface configuration
The UART interface of TOBY-L2 series modules is available as AT command interface with the default configuration
described in Table 11 (for more details and information about further settings, see the u-blox AT Commands
Manual [3]).
Interface
AT Settings
Comments
UART interface
AT interface: enabled
AT command interface is enabled by default on the UART physical interface
AT+IPR=0
One-shot autobauding enabled by default on the modules
AT+ICF=3,1
8N1 frame format enabled by default
AT&K3
HW flow control enabled by default
AT&S1
DSR line (Circuit 107 in ITU-T V.24) set ON in data mode
12
and set OFF in command mode
17
AT&D1
Upon an ON-to-OFF transition of DTR line (Circuit 108/2 in ITU-T V.24), the module (DCE)
enters online command mode
17
and issues an OK result code
AT&C1
DCD line (Circuit 109 in ITU-T V.24) changes in accordance with the Carrier detect status; ON
if the Carrier is detected, OFF otherwise
MUX protocol: disabled
Multiplexing mode is disabled by default and it can be enabled by AT+CMUX command. For
more details, see the Mux Implementation Application Note [12].
The following virtual channels are defined:
Channel 0: control channel
Channel 1 – 5: AT commands / data connection
Table 11: Default UART interface configuration
1.9.2.3 UART signals behavior
At the module switch-on, before the UART interface initialization (as described in the power-on sequence reported
in Figure 14), each pin is first tri-stated and then is set to its relative internal reset state
13
. At the end of the boot
sequence, the UART interface is initialized, the module is by default in active-mode, and the UART interface is
enabled as AT commands interface.
The configuration and the behavior of the UART signals after the boot sequence are described below. See section
1.4 for definition and description of module operating modes referred to in this section.
RXD signal behavior
The module data output line (RXD) is set by default to the OFF state (high level) at UART initialization. The module
holds RXD in the OFF state until the module does not transmit some data.
TXD signal behavior
The module data input line (TXD) is set by default to the OFF state (high level) at UART initialization. The TXD line
is then held by the module in the OFF state if the line is not activated by the DTE: an active pull-up is enabled inside
the module on the TXD input.
12
For the definition of the interface data mode, command mode and online command mode see the u-blox AT Commands Manual [3]
13
See the pin description table in the TOBY-L2 series Data Sheet [1]