Integration Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.5.1.1 VCC or 3.3Vaux supply requirements
- 1.5.1.2 VCC or 3.3Vaux current consumption in 2G connected-mode
- 1.5.1.3 VCC or 3.3Vaux current consumption in 3G connected mode
- 1.5.1.4 VCC or 3.3Vaux current consumption in LTE connected-mode
- 1.5.1.5 VCC or 3.3Vaux current consumption in cyclic idle/active mode (power saving enabled)
- 1.5.1.6 VCC or 3.3Vaux current consumption in fixed active-mode (power saving disabled)
- 1.5.2 RTC supply input/output (V_BCKP)
- 1.5.3 Generic digital interfaces supply output (V_INT)
- 1.5.1 Module supply input (VCC or 3.3Vaux)
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Data communication interfaces
- 1.10 Audio
- 1.11 General Purpose Input/Output
- 1.12 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 1.13 Reserved pins (RSVD)
- 1.14 Not connected pins (NC)
- 1.15 System features
- 1.15.1 Network indication
- 1.15.2 Antenna supervisor
- 1.15.3 Jamming detection
- 1.15.4 IP modes of operation
- 1.15.5 Dual stack IPv4/IPv6
- 1.15.6 TCP/IP and UDP/IP
- 1.15.7 FTP
- 1.15.8 HTTP
- 1.15.9 SSL / TLS
- 1.15.10 Bearer Independent Protocol
- 1.15.11 Wi-Fi integration
- 1.15.12 Firmware update Over AT (FOAT)
- 1.15.13 Firmware update Over The Air (FOTA)
- 1.15.14 Smart temperature management
- 1.15.15 SIM Access Profile (SAP)
- 1.15.16 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.2.1.1 General guidelines for VCC or 3.3Vaux supply circuit selection and design
- 2.2.1.2 Guidelines for VCC or 3.3Vaux supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC or 3.3Vaux supply circuit design using a Low Drop-Out linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC or 3.3Vaux supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC or 3.3Vaux supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply output (V_BCKP)
- 2.2.3 Generic digital interfaces supply output (V_INT)
- 2.2.1 Module supply (VCC or 3.3Vaux)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Data communication interfaces
- 2.7 Audio interface
- 2.8 General Purpose Input/Output
- 2.9 Mini PCIe specific signals (W_DISABLE#, LED_WWAN#)
- 2.10 Reserved pins (RSVD)
- 2.11 Module placement
- 2.12 TOBY-L2 series module footprint and paste mask
- 2.13 MPCI-L2 series module installation
- 2.14 Thermal guidelines
- 2.15 ESD guidelines
- 2.16 Schematic for TOBY-L2 and MPCI-L2 series module integration
- 2.17 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 4.1 Product certification approval overview
- 4.2 US Federal Communications Commission notice
- 4.3 Innovation, Science and Economic Development Canada notice
- 4.4 Brazilian Anatel certification
- 4.5 European Conformance CE mark
- 4.6 Australian Regulatory Compliance Mark
- 4.7 Taiwanese NCC certification
- 4.8 Japanese Giteki certification
- 5 Product testing
- Appendix
- A Migration between TOBY-L1 and TOBY-L2
- B Glossary
- Related documents
- Revision history
- Contact
TOBY-L2 and MPCI-L2 series - System Integration Manual
UBX-13004618 - R26 System description
Page 37 of 162
1.7 Antenna interface
1.7.1 Antenna RF interfaces (ANT1 / ANT2)
TOBY-L2 and MPCI-L2 series modules provide two RF interfaces for connecting the external antennas:
The ANT1 represents the primary RF input/output for transmission and reception of LTE/3G/2G RF signals.
The ANT1 pin of TOBY-L2 series modules has a nominal characteristic impedance of 50 and must be
connected to the primary Tx / Rx antenna through a 50 transmission line to allow proper RF transmission
and reception.
The ANT1 Hirose U.FL-R-SMT coaxial connector receptacle of MPCI-L2 series modules has a nominal
characteristic impedance of 50 and must be connected to the primary Tx / Rx antenna through a mated RF
plug with a 50 coaxial cable assembly to allow proper RF transmission and reception.
The ANT2 represents the secondary RF input for the reception of the LTE RF signals for the Down-Link MIMO
2 x 2 radio technology supported by TOBY-L2 and MPCI-L2 series modules as required feature for LTE category
4 UEs, and for the reception of the 3G RF signals for the Down-Link Rx diversity radio technology supported
by TOBY-L2 and MPCI-L2 series modules as additional feature for 3G DC-HSDPA category 24 UEs.
The ANT2 pin of TOBY-L2 series modules has a nominal characteristic impedance of 50 and must be
connected to the secondary Rx antenna through a 50 transmission line to allow proper RF reception.
The ANT2 Hirose U.FL-R-SMT coaxial connector receptacle of MPCI-L2 series modules has a nominal
characteristic impedance of 50 and must be connected to the secondary Rx antenna through a mated RF
plug with a 50 coaxial cable assembly to allow proper RF reception.
The Multiple Input Multiple Output (MIMO) radio technology is an essential component of LTE radio systems based
on the use of multiple antennas at both the transmitter and receiver sides to improve communication performance
and achieve highest possible bit rate. A MIMO m x n system consists of m transmit and n receive antennas, where
the data to be transmitted is divided into m independent data streams. Note that the terms Input and Output refer
to the radio channel carrying the signal, not to the devices having antennas, so that in the Down-Link MIMO 2 x
2 system supported by TOBY-L2 and MPCI-L2 series modules:
The LTE data stream is divided into 2 independent streams by the Tx-antennas of the base station
The cellular modules, at the receiver side, receives both LTE data streams by 2 Rx-antennas (ANT1 / ANT2)
Base Station
Tx-1
Antenna
Tx-2
Antenna
TOBY-L2 series
MPCI-L2 series
ANT1
Rx-1
Antenna
ANT2
Rx-2
Antenna
Data Stream 1
Data Stream 2
Figure 18: Description of the LTE Down-Link MIMO 2 x 2 radio technology supported by TOBY-L2 and MPCI-L2 series modules
TOBY-L2 and MPCI-L2 series modules support the LTE MIMO 2 x 2 radio technology in the Down-Link path only
(from the base station to the module): the ANT1 port is the only one RF interface that is used by the module to
transmit the RF signal in the Up-Link path (from the module to the base station).