User's Manual

Table Of Contents
SARA-G3 and SARA-U2 series - System Integration Manual
UBX-13000995 - R08 Objective Specification Design-in
Page 86 of 188
Output voltage slope: the use of the soft start function provided by some voltage regulator should be
carefully evaluated, since the VCC pins voltage must ramp from 2.5 V to 3.2 V in less than 1 ms to switch on
the SARA-U2 modules or in less than 4 ms to switch on the SARA-G3 modules by applying VCC supply, that
otherwise can be switched on by forcing a low level on the RESET_N pin during the VCC rising edge and
then releasing the RESET_N pin when the VCC supply voltage stabilizes at its proper nominal value
Figure 38 and the components listed in Table 18 show an example of a power supply circuit, where the VCC
module supply is provided by an LDO linear regulator capable of delivering the specified maximum peak / pulse
current, with proper power handling capability.
It is recommended to configure the LDO linear regulator to generate a voltage supply value slightly below the
maximum limit of the module VCC normal operating range (e.g. ~4.1 V as in the circuit described in Figure 38
and Table 18). This reduces the power on the linear regulator and improves the thermal design of the supply
circuit.
5V
C1 R1
IN OUT
ADJ
GND
1
2
4
5
3
C2R2
R3
U1
SHDN
SARA-G3 / SARA-U2
52
VCC
53
VCC
51
VCC
GND
Figure 38: Suggested schematic design for the VCC voltage supply application circuit using an LDO linear regulator
Reference
Description
Part Number - Manufacturer
C1, C2
10 µF Capacitor Ceramic X5R 0603 20% 6.3 V
GRM188R60J106ME47 - Murata
R1
47 k Resistor 0402 5% 0.1 W
RC0402JR-0747KL - Yageo Phycomp
R2
9.1 k Resistor 0402 5% 0.1 W
RC0402JR-079K1L - Yageo Phycomp
R3
3.9 k Resistor 0402 5% 0.1 W
RC0402JR-073K9L - Yageo Phycomp
U1
LDO Linear Regulator ADJ 3.0 A
LT1764AEQ#PBF - Linear Technology
Table 18: Suggested components for VCC voltage supply application circuit using an LDO linear regulator
2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
Rechargeable Li-Ion or Li-Pol batteries connected to the VCC pins should meet the following prerequisites to
comply with the module VCC requirements summarized in Table 7:
Maximum pulse and DC discharge current: the rechargeable Li-Ion battery with its output circuit must be
capable of delivering to VCC pins the specified maximum peak / pulse current with 1/8 duty cycle, and a DC
current greater than the module maximum average current consumption (refer to the SARA-G3 series Data
Sheet [1] or the SARA-U2 series Data Sheet [2]). The maximum pulse discharge current and the maximum
DC discharge current are not always reported in battery data sheets, but the maximum DC discharge current
is typically almost equal to the battery capacity in Amp-hours divided by 1 hour
DC series resistance: the rechargeable Li-Ion battery with its output circuit must be capable of avoiding a
VCC voltage drop greater than 400 mV during transmit bursts