User's Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Serial interfaces
- 1.9.1 Asynchronous serial interface (UART)
- 1.9.1.1 UART features
- 1.9.1.2 UART AT interface configuration
- 1.9.1.3 UART signal behavior
- 1.9.1.4 UART and power-saving
- AT+UPSV=0: power saving disabled, fixed active-mode
- AT+UPSV=1: power saving enabled, cyclic idle/active-mode
- AT+UPSV=2: power saving enabled and controlled by the RTS line
- AT+UPSV=3: power saving enabled and controlled by the DTR line
- Wake up via data reception
- Additional considerations for SARA-U2 modules
- 1.9.1.5 Multiplexer protocol (3GPP 27.010)
- 1.9.2 Auxiliary asynchronous serial interface (UART AUX)
- 1.9.3 USB interface
- 1.9.4 DDC (I2C) interface
- 1.9.1 Asynchronous serial interface (UART)
- 1.10 Audio interface
- 1.11 General Purpose Input/Output (GPIO)
- 1.12 Reserved pins (RSVD)
- 1.13 System features
- 1.13.1 Network indication
- 1.13.2 Antenna detection
- 1.13.3 Jamming detection
- 1.13.4 TCP/IP and UDP/IP
- 1.13.5 FTP
- 1.13.6 HTTP
- 1.13.7 SMTP
- 1.13.8 SSL
- 1.13.9 Dual stack IPv4/IPv6
- 1.13.10 Smart temperature management
- 1.13.11 AssistNow clients and GNSS integration
- 1.13.12 Hybrid positioning and CellLocateTM
- 1.13.13 Firmware upgrade Over AT (FOAT)
- 1.13.14 Firmware upgrade Over The Air (FOTA)
- 1.13.15 In-Band modem (eCall / ERA-GLONASS)
- 1.13.16 SIM Access Profile (SAP)
- 1.13.17 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using a Low Drop-Out (LDO) linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply (V_BCKP)
- 2.2.3 Interface supply (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Serial interfaces
- 2.6.1 Asynchronous serial interface (UART)
- 2.6.1.1 Guidelines for UART circuit design
- Providing the full RS-232 functionality (using the complete V.24 link)
- Providing the TXD, RXD, RTS, CTS and DTR lines only (not using the complete V.24 link)
- Providing the TXD, RXD, RTS and CTS lines only (not using the complete V.24 link)
- Providing the TXD and RXD lines only (not using the complete V24 link)
- Additional considerations
- 2.6.1.2 Guidelines for UART layout design
- 2.6.1.1 Guidelines for UART circuit design
- 2.6.2 Auxiliary asynchronous serial interface (UART AUX)
- 2.6.3 Universal Serial Bus (USB)
- 2.6.4 DDC (I2C) interface
- 2.6.1 Asynchronous serial interface (UART)
- 2.7 Audio interface
- 2.7.1 Analog audio interface
- 2.7.1.1 Guidelines for microphone and speaker connection circuit design (headset / handset modes)
- 2.7.1.2 Guidelines for microphone and loudspeaker connection circuit design (hands-free mode)
- 2.7.1.3 Guidelines for external analog audio device connection circuit design
- 2.7.1.4 Guidelines for analog audio layout design
- 2.7.2 Digital audio interface
- 2.7.1 Analog audio interface
- 2.8 General Purpose Input/Output (GPIO)
- 2.9 Reserved pins (RSVD)
- 2.10 Module placement
- 2.11 Module footprint and paste mask
- 2.12 Thermal guidelines
- 2.13 ESD guidelines
- 2.14 SARA-G350 ATEX integration in explosive atmospheres applications
- 2.15 Schematic for SARA-G3 and SARA-U2 series module integration
- 2.16 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 5 Product testing
- Appendix
- A Migration between LISA and SARA-G3 modules
- A.1 Overview
- A.2 Checklist for migration
- A.3 Software migration
- A.4 Hardware migration
- B Migration between SARA-G3 and SARA-U2
- C Glossary
- Related documents
- Revision history
- Contact
SARA-G3 and SARA-U2 series - System Integration Manual
UBX-13000995 - R08 Objective Specification System description
Page 56 of 188
Combining a u-blox cellular module with a u-blox GNSS receiver allows designers to have full access to the
positioning receiver directly via the cellular module: it relays control messages to the GNSS receiver via a
dedicated DDC (I
2
C) interface. A 2
nd
interface connected to the positioning receiver is not necessary: AT
commands via the UART or USB serial interface of the cellular module allows a fully control of the GNSS receiver
from any host processor.
SARA-G340, SARA-G350 and SARA-U2 modules feature embedded GNSS aiding that is a set of specific features
developed by u-blox to enhance GNSS performance, decreasing the Time To First Fix (TTFF), thus allowing to
calculate the position in a shorter time with higher accuracy.
SARA-G340, SARA-G350 and SARA-U2 modules support these GNSS aiding types:
Local aiding
AssistNow Online
AssistNow Offline
AssistNow Autonomous
The embedded GNSS aiding features can be used only if the DDC (I
2
C) interface of the cellular module is
connected to the u-blox GNSS receivers.
SARA-G340, SARA-G350 and SARA-U2 cellular modules provide additional custom functions over GPIO pins to
improve the integration with u-blox positioning chips and modules. GPIO pins can handle:
GNSS receiver power-on/off: “GNSS supply enable” function provided by GPIO2 improves the positioning
receiver power consumption. When the GNSS functionality is not required, the positioning receiver can be
completely switched off by the cellular module that is controlled by AT commands
The wake up from idle-mode when the GNSS receiver is ready to send data: “GNSS data ready” function
provided by GPIO3 improves the cellular module power consumption. When power saving is enabled in the
cellular module by the AT+UPSV command and the GNSS receiver does not send data by the DDC (I
2
C)
interface, the module automatically enters idle-mode whenever possible. With the “GNSS data ready”
function the GNSS receiver can indicate to the cellular module that it is ready to send data by the DDC (I
2
C)
interface: the positioning receiver can wake up the cellular module if it is in idle-mode, so the cellular
module does not lose the data sent by the GNSS receiver even if power saving is enabled
The RTC synchronization signal to the GNSS receiver: “GNSS RTC sharing” function provided by GPIO4
improves GNSS receiver performance, decreasing the Time To First Fix (TTFF), and thus allowing to calculate
the position in a shorter time with higher accuracy. When GPS local aiding is enabled, the cellular module
automatically uploads data such as position, time, ephemeris, almanac, health and ionospheric parameter
from the positioning receiver into its local memory, and restores this to the GNSS receiver at the next power
up of the positioning receiver
For more details regarding the handling of the DDC (I
2
C) interface, the GNSS aiding features and the
GNSS related functions over GPIOs, see section 1.11, to the u-blox AT Commands Manual [3] (AT+UGPS,
AT+UGPRF, AT+UGPIOC AT commands) and the GNSS Implementation Application Note [24].
“GNSS data ready” and “GNSS RTC sharing” functions are not supported by all u-blox GNSS receivers
HW or ROM/FW versions. See the GNSS Implementation Application Note [24] or to the Hardware
Integration Manual of the u-blox GNSS receivers for the supported features.
As additional improvement for the GNSS receiver performance, the V_BCKP supply output of SARA-G340,
SARA-G350 and SARA-U2 modules can be connected to the V_BCKP supply input pin of u-blox positioning
chips and modules to provide the supply for the GNSS real time clock and backup RAM when the VCC supply of
the cellular module is within its operating range and the VCC supply of the GNSS receiver is disabled.
This enables the u-blox positioning receiver to recover from a power breakdown with either a hot start or a
warm start (depending on the duration of the GNSS receiver VCC outage) and to maintain the configuration
settings saved in the backup RAM.