User's Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Serial interfaces
- 1.9.1 Asynchronous serial interface (UART)
- 1.9.1.1 UART features
- 1.9.1.2 UART AT interface configuration
- 1.9.1.3 UART signal behavior
- 1.9.1.4 UART and power-saving
- AT+UPSV=0: power saving disabled, fixed active-mode
- AT+UPSV=1: power saving enabled, cyclic idle/active-mode
- AT+UPSV=2: power saving enabled and controlled by the RTS line
- AT+UPSV=3: power saving enabled and controlled by the DTR line
- Wake up via data reception
- Additional considerations for SARA-U2 modules
- 1.9.1.5 Multiplexer protocol (3GPP 27.010)
- 1.9.2 Auxiliary asynchronous serial interface (UART AUX)
- 1.9.3 USB interface
- 1.9.4 DDC (I2C) interface
- 1.9.1 Asynchronous serial interface (UART)
- 1.10 Audio interface
- 1.11 General Purpose Input/Output (GPIO)
- 1.12 Reserved pins (RSVD)
- 1.13 System features
- 1.13.1 Network indication
- 1.13.2 Antenna detection
- 1.13.3 Jamming detection
- 1.13.4 TCP/IP and UDP/IP
- 1.13.5 FTP
- 1.13.6 HTTP
- 1.13.7 SMTP
- 1.13.8 SSL
- 1.13.9 Dual stack IPv4/IPv6
- 1.13.10 Smart temperature management
- 1.13.11 AssistNow clients and GNSS integration
- 1.13.12 Hybrid positioning and CellLocateTM
- 1.13.13 Firmware upgrade Over AT (FOAT)
- 1.13.14 Firmware upgrade Over The Air (FOTA)
- 1.13.15 In-Band modem (eCall / ERA-GLONASS)
- 1.13.16 SIM Access Profile (SAP)
- 1.13.17 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using a Low Drop-Out (LDO) linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply (V_BCKP)
- 2.2.3 Interface supply (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Serial interfaces
- 2.6.1 Asynchronous serial interface (UART)
- 2.6.1.1 Guidelines for UART circuit design
- Providing the full RS-232 functionality (using the complete V.24 link)
- Providing the TXD, RXD, RTS, CTS and DTR lines only (not using the complete V.24 link)
- Providing the TXD, RXD, RTS and CTS lines only (not using the complete V.24 link)
- Providing the TXD and RXD lines only (not using the complete V24 link)
- Additional considerations
- 2.6.1.2 Guidelines for UART layout design
- 2.6.1.1 Guidelines for UART circuit design
- 2.6.2 Auxiliary asynchronous serial interface (UART AUX)
- 2.6.3 Universal Serial Bus (USB)
- 2.6.4 DDC (I2C) interface
- 2.6.1 Asynchronous serial interface (UART)
- 2.7 Audio interface
- 2.7.1 Analog audio interface
- 2.7.1.1 Guidelines for microphone and speaker connection circuit design (headset / handset modes)
- 2.7.1.2 Guidelines for microphone and loudspeaker connection circuit design (hands-free mode)
- 2.7.1.3 Guidelines for external analog audio device connection circuit design
- 2.7.1.4 Guidelines for analog audio layout design
- 2.7.2 Digital audio interface
- 2.7.1 Analog audio interface
- 2.8 General Purpose Input/Output (GPIO)
- 2.9 Reserved pins (RSVD)
- 2.10 Module placement
- 2.11 Module footprint and paste mask
- 2.12 Thermal guidelines
- 2.13 ESD guidelines
- 2.14 SARA-G350 ATEX integration in explosive atmospheres applications
- 2.15 Schematic for SARA-G3 and SARA-U2 series module integration
- 2.16 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 5 Product testing
- Appendix
- A Migration between LISA and SARA-G3 modules
- A.1 Overview
- A.2 Checklist for migration
- A.3 Software migration
- A.4 Hardware migration
- B Migration between SARA-G3 and SARA-U2
- C Glossary
- Related documents
- Revision history
- Contact
SARA-G3 and SARA-U2 series - System Integration Manual
UBX-13000995 - R08 Objective Specification System description
Page 37 of 188
1.6.4 External 32 kHz signal input (EXT32K)
The EXT32K pin is not available on SARA-G340, SARA-G350 and SARA-U2 series modules.
The EXT32K pin of SARA-G300 / SARA-G310 modules is an input pin that must be fed by a proper 32 kHz
signal to make available the reference clock for the Real Time Clock (RTC) timing, used by the module processor
when in the low power idle-mode.
SARA-G300 / SARA-G310 modules can enter the low power idle-mode only if a proper 32 kHz signal is provided
at the EXT32K input pin, with power saving configuration enabled by the AT+UPSV command. In this way the
different current consumption figures can be reached with the EXT32K input fed by the 32K_OUT output or by
a proper external 32 kHz signal (for more details see section 1.5.1.4 and to “Current consumption” section in
SARA-G3 series Data Sheet [1]).
SARA-G300 / SARA-G310 modules can provide the RTC functions (as RTC timing by AT+CCLK command and
RTC alarm by AT+CALA command) only if a proper 32 kHz signal is provided at the EXT32K input pin. The RTC
functions will be available only when the module is switched on if the EXT32K input is fed by the 32K_OUT
output, or they will be available also when the module is not powered or switched off if the EXT32K input is fed
by a proper external 32 kHz signal.
SARA-G3 series Data Sheet [1] describes the detailed electrical characteristics of the EXT32K input pin.
The 32 kHz reference clock for the RTC timing is automatically generated by the internal oscillator provided on
the SARA-G340, SARA-G350 and SARA-U2 series modules: the same pin (31) is a reserved (RSVD) pin internally
not connected, since an external 32 kHz signal is not needed to enter the low power idle-mode and to provide
the RTC functions.
1.6.5 Internal 32 kHz signal output (32K_OUT)
The 32K_OUT pin is not available on SARA-G340, SARA-G350 and SARA-U2 series modules.
The 32K_OUT pin of SARA-G300 / SARA-G310 modules is an output pin that provides a 32 kHz reference signal
generated by the module, suitable only to feed the EXT32K input pin of SARA-G300 / SARA-G310 modules, to
make available the reference clock for the Real Time Clock (RTC) timing, so that the modules can enter the low
power idle-mode and can provide the RTC functions with modules switched on.
The 32K_OUT pin does not provide the 32 kHz output signal when the SARA-G300 / SARA-G310 modules are
in power down mode: the EXT32K input pin must be fed by an external proper 32 kHz signal to make available
the RTC functions when the modules are not powered or switched off.
SARA-G340, SARA-G350 and SARA-U2 series modules do not provide the 32K_OUT output, as there is no
EXT32K input to feed on the modules: the pin 24 constitute the GPIO3 on these modules.