User's Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Serial interfaces
- 1.9.1 Asynchronous serial interface (UART)
- 1.9.1.1 UART features
- 1.9.1.2 UART AT interface configuration
- 1.9.1.3 UART signal behavior
- 1.9.1.4 UART and power-saving
- AT+UPSV=0: power saving disabled, fixed active-mode
- AT+UPSV=1: power saving enabled, cyclic idle/active-mode
- AT+UPSV=2: power saving enabled and controlled by the RTS line
- AT+UPSV=3: power saving enabled and controlled by the DTR line
- Wake up via data reception
- Additional considerations for SARA-U2 modules
- 1.9.1.5 Multiplexer protocol (3GPP 27.010)
- 1.9.2 Auxiliary asynchronous serial interface (UART AUX)
- 1.9.3 USB interface
- 1.9.4 DDC (I2C) interface
- 1.9.1 Asynchronous serial interface (UART)
- 1.10 Audio interface
- 1.11 General Purpose Input/Output (GPIO)
- 1.12 Reserved pins (RSVD)
- 1.13 System features
- 1.13.1 Network indication
- 1.13.2 Antenna detection
- 1.13.3 Jamming detection
- 1.13.4 TCP/IP and UDP/IP
- 1.13.5 FTP
- 1.13.6 HTTP
- 1.13.7 SMTP
- 1.13.8 SSL
- 1.13.9 Dual stack IPv4/IPv6
- 1.13.10 Smart temperature management
- 1.13.11 AssistNow clients and GNSS integration
- 1.13.12 Hybrid positioning and CellLocateTM
- 1.13.13 Firmware upgrade Over AT (FOAT)
- 1.13.14 Firmware upgrade Over The Air (FOTA)
- 1.13.15 In-Band modem (eCall / ERA-GLONASS)
- 1.13.16 SIM Access Profile (SAP)
- 1.13.17 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using a Low Drop-Out (LDO) linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply (V_BCKP)
- 2.2.3 Interface supply (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Serial interfaces
- 2.6.1 Asynchronous serial interface (UART)
- 2.6.1.1 Guidelines for UART circuit design
- Providing the full RS-232 functionality (using the complete V.24 link)
- Providing the TXD, RXD, RTS, CTS and DTR lines only (not using the complete V.24 link)
- Providing the TXD, RXD, RTS and CTS lines only (not using the complete V.24 link)
- Providing the TXD and RXD lines only (not using the complete V24 link)
- Additional considerations
- 2.6.1.2 Guidelines for UART layout design
- 2.6.1.1 Guidelines for UART circuit design
- 2.6.2 Auxiliary asynchronous serial interface (UART AUX)
- 2.6.3 Universal Serial Bus (USB)
- 2.6.4 DDC (I2C) interface
- 2.6.1 Asynchronous serial interface (UART)
- 2.7 Audio interface
- 2.7.1 Analog audio interface
- 2.7.1.1 Guidelines for microphone and speaker connection circuit design (headset / handset modes)
- 2.7.1.2 Guidelines for microphone and loudspeaker connection circuit design (hands-free mode)
- 2.7.1.3 Guidelines for external analog audio device connection circuit design
- 2.7.1.4 Guidelines for analog audio layout design
- 2.7.2 Digital audio interface
- 2.7.1 Analog audio interface
- 2.8 General Purpose Input/Output (GPIO)
- 2.9 Reserved pins (RSVD)
- 2.10 Module placement
- 2.11 Module footprint and paste mask
- 2.12 Thermal guidelines
- 2.13 ESD guidelines
- 2.14 SARA-G350 ATEX integration in explosive atmospheres applications
- 2.15 Schematic for SARA-G3 and SARA-U2 series module integration
- 2.16 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 5 Product testing
- Appendix
- A Migration between LISA and SARA-G3 modules
- A.1 Overview
- A.2 Checklist for migration
- A.3 Software migration
- A.4 Hardware migration
- B Migration between SARA-G3 and SARA-U2
- C Glossary
- Related documents
- Revision history
- Contact
SARA-G3 and SARA-U2 series - System Integration Manual
UBX-13000995 - R08 Objective Specification System description
Page 36 of 188
1.6.3 Module reset
SARA-G3 and SARA-U2 series modules can be properly reset (rebooted) by:
AT+CFUN command (see the u-blox AT Commands Manual [3] for more details).
This command causes an “internal” or “software” reset of the module, which is an asynchronous reset of the
module baseband processor. The current parameter settings are saved in the module’s non-volatile memory and
a proper network detach is performed: this is the proper way to reset the modules.
An abrupt hardware reset occurs on SARA-G3 and SARA-U2 series modules when a low level is applied on the
RESET_N input pin for a specific time period. In this case, the current parameter settings are not saved in the
module’s non-volatile memory and a proper network detach is not performed.
It is highly recommended to avoid an abrupt hardware reset of the module by forcing a low level on the
RESET_N input during modules normal operation: the RESET_N line should be set low only if reset or
shutdown via AT commands fails or if the module does not provide a reply to a specific AT command
after a time period longer than the one defined in the u-blox AT Commands Manual [3].
As described in Figure 21, both the SARA-G3 and SARA-U2 series modules are equipped with an internal pull-up
resistor which pulls the line to the high logic level when the RESET_N pin is not forced low from the external.
The pull-up is internally biased by V_INT on SARA-G3 modules and is biased by V_BCKP on SARA-U2 modules.
A series Schottky diode is mounted inside the SARA-G3 modules, increasing the RESET_N input voltage range.
Refer to the SARA-G3 series Data Sheet [1] and the SARA-U2 series Data Sheet [2] for the detailed electrical
characteristics of the RESET_N input.
Baseband
Processor
18
RESET_N
SARA-U2 series
Reset
Power
Management
Reset
10k
V_BCKP
Baseband
Processor
18
RESET_N
SARA-G3 series
Reset
10k
V_INT
Figure 21: RESET_N input description
When a low level is applied to the RESET_N input, it causes an “external” or “hardware” reset of the modules,
with the following behavior of SARA-G3 and SARA-U2 series modules due to different internal circuits:
SARA-G3 modules: reset of the processor core, excluding the Power Management Unit and the RTC block.
The V_INT generic digital interfaces supply is switched on and each digital pin is set in its internal reset state.
The V_BCKP supply and the RTC block are switched on.
SARA-U2 modules: reset of the processor core and the Power Management Unit, excluding the RTC block.
The V_INT generic digital interfaces supply is switched off and all digital pins are tri-stated (not supplied).
The V_BCKP supply and the RTC block are switched on.
Before the switch-on of the generic digital interface supply source (V_INT) of the module, no voltage
driven by an external application should be applied to any generic digital interface of the modules.
The internal reset state of all digital pins is reported in the pin description table in the SARA-G3 series
Data Sheet [1] and in the SARA-U2 series Data Sheet [2].