User's Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Serial interfaces
- 1.9.1 Asynchronous serial interface (UART)
- 1.9.1.1 UART features
- 1.9.1.2 UART AT interface configuration
- 1.9.1.3 UART signal behavior
- 1.9.1.4 UART and power-saving
- AT+UPSV=0: power saving disabled, fixed active-mode
- AT+UPSV=1: power saving enabled, cyclic idle/active-mode
- AT+UPSV=2: power saving enabled and controlled by the RTS line
- AT+UPSV=3: power saving enabled and controlled by the DTR line
- Wake up via data reception
- Additional considerations for SARA-U2 modules
- 1.9.1.5 Multiplexer protocol (3GPP 27.010)
- 1.9.2 Auxiliary asynchronous serial interface (UART AUX)
- 1.9.3 USB interface
- 1.9.4 DDC (I2C) interface
- 1.9.1 Asynchronous serial interface (UART)
- 1.10 Audio interface
- 1.11 General Purpose Input/Output (GPIO)
- 1.12 Reserved pins (RSVD)
- 1.13 System features
- 1.13.1 Network indication
- 1.13.2 Antenna detection
- 1.13.3 Jamming detection
- 1.13.4 TCP/IP and UDP/IP
- 1.13.5 FTP
- 1.13.6 HTTP
- 1.13.7 SMTP
- 1.13.8 SSL
- 1.13.9 Dual stack IPv4/IPv6
- 1.13.10 Smart temperature management
- 1.13.11 AssistNow clients and GNSS integration
- 1.13.12 Hybrid positioning and CellLocateTM
- 1.13.13 Firmware upgrade Over AT (FOAT)
- 1.13.14 Firmware upgrade Over The Air (FOTA)
- 1.13.15 In-Band modem (eCall / ERA-GLONASS)
- 1.13.16 SIM Access Profile (SAP)
- 1.13.17 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using a Low Drop-Out (LDO) linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply (V_BCKP)
- 2.2.3 Interface supply (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Serial interfaces
- 2.6.1 Asynchronous serial interface (UART)
- 2.6.1.1 Guidelines for UART circuit design
- Providing the full RS-232 functionality (using the complete V.24 link)
- Providing the TXD, RXD, RTS, CTS and DTR lines only (not using the complete V.24 link)
- Providing the TXD, RXD, RTS and CTS lines only (not using the complete V.24 link)
- Providing the TXD and RXD lines only (not using the complete V24 link)
- Additional considerations
- 2.6.1.2 Guidelines for UART layout design
- 2.6.1.1 Guidelines for UART circuit design
- 2.6.2 Auxiliary asynchronous serial interface (UART AUX)
- 2.6.3 Universal Serial Bus (USB)
- 2.6.4 DDC (I2C) interface
- 2.6.1 Asynchronous serial interface (UART)
- 2.7 Audio interface
- 2.7.1 Analog audio interface
- 2.7.1.1 Guidelines for microphone and speaker connection circuit design (headset / handset modes)
- 2.7.1.2 Guidelines for microphone and loudspeaker connection circuit design (hands-free mode)
- 2.7.1.3 Guidelines for external analog audio device connection circuit design
- 2.7.1.4 Guidelines for analog audio layout design
- 2.7.2 Digital audio interface
- 2.7.1 Analog audio interface
- 2.8 General Purpose Input/Output (GPIO)
- 2.9 Reserved pins (RSVD)
- 2.10 Module placement
- 2.11 Module footprint and paste mask
- 2.12 Thermal guidelines
- 2.13 ESD guidelines
- 2.14 SARA-G350 ATEX integration in explosive atmospheres applications
- 2.15 Schematic for SARA-G3 and SARA-U2 series module integration
- 2.16 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 5 Product testing
- Appendix
- A Migration between LISA and SARA-G3 modules
- A.1 Overview
- A.2 Checklist for migration
- A.3 Software migration
- A.4 Hardware migration
- B Migration between SARA-G3 and SARA-U2
- C Glossary
- Related documents
- Revision history
- Contact
SARA-G3 and SARA-U2 series - System Integration Manual
UBX-13000995 - R08 Objective Specification Appendix
Page 171 of 188
A.4.2 System functions interfaces
Module power-on
SARA-G3 and LISA series power-on sequence is initiated in one of the ways summarized in Table 50. For more
details, see section 1.6.1 or to the relative System Integration Manual of the module [7], [8].
SARA-G3 series
LISA-C2 series
LISA-U1 series
LISA-U2 series
Rising edge on the VCC pins to a
valid voltage as module supply
Rising edge on the VCC pins to a
valid voltage as module supply
with PWR_ON pin permanently
low when VCC is applied
Rising edge on the VCC pins to a
valid voltage as module supply
Rising edge on the VCC pins to a
valid voltage as module supply
Low level on the PWR_ON pin
for appropriate time period
Low pulse on the PWR_ON pin
for appropriate time period
Low pulse on the PWR_ON pin
for appropriate time period
Low pulse on the PWR_ON pin
for appropriate time period
Pre-programmed RTC alarm (not
supported by SARA-G300/G310)
Pre-programmed RTC alarm
Pre-programmed RTC alarm
RESET_N input pin released
from the low level
RESET_N input pin released
from the low level
Table 50: Summary of power on events among modules
The same compatible external power-on circuit can be implemented for SARA and LISA modules even if there
are minor differences in the PWR_ON input voltage levels ranges and in the low level time or low pulse time to
switch-on the module, as reported in Table 51 or in the relative datasheet of the module [1], [4], [5], [6].
PWR_ON falling edge (i.e. low pulse) is required for LISA series, but it is not required for SARA. External pull-up
is not needed for LISA-C2 series since internal pull-up is provided.
Module power-off
SARA and LISA modules can all be properly switched off by means of the AT+CPWROFF command.
Additionally, all LISA-U2 modules, except LISA-U200-00S, can be properly switched off by low pulse on the
PWR_ON pin, as reported in Table 51 or in the relative datasheet of the module [6].
Module reset
SARA and LISA modules reset can be performed in one of the following ways:
Forcing a low level on the RESET_N pin, causing an “external” or “hardware” reset
By means of the AT+CFUN command, causing an “internal” or “software” reset
The same compatible external reset circuit can be implemented for SARA and LISA modules even if there are
minor differences in the RESET_N input voltage levels ranges and in the low level time, as reported in Table 51
or in the relative datasheet of the module [1], [4], [5], [6].
Additional precautions are suggested for the RESET_N line of LISA-U series modules, depending on the
application board handling, to satisfy ESD immunity test requirements as described in the LISA-U Series System
Integration Manual [8].
External 32 kHz input and internal 32 kHz output
The EXT32K input and the 32K_OUT output are available only on the SARA-G300 and SARA-G310 modules to
provide the 32 kHz reference clock for the Real Time Clock (RTC) timing, used by the module processor to reach
the low power idle-mode and provide the RTC functions.
SARA-G340, SARA-G350 and LISA-U modules are equipped with internal 32 kHz oscillator to provide the same
functions.
LISA-C2 series do not provide RTC and the relative functions.