User's Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Serial interfaces
- 1.9.1 Asynchronous serial interface (UART)
- 1.9.1.1 UART features
- 1.9.1.2 UART AT interface configuration
- 1.9.1.3 UART signal behavior
- 1.9.1.4 UART and power-saving
- AT+UPSV=0: power saving disabled, fixed active-mode
- AT+UPSV=1: power saving enabled, cyclic idle/active-mode
- AT+UPSV=2: power saving enabled and controlled by the RTS line
- AT+UPSV=3: power saving enabled and controlled by the DTR line
- Wake up via data reception
- Additional considerations for SARA-U2 modules
- 1.9.1.5 Multiplexer protocol (3GPP 27.010)
- 1.9.2 Auxiliary asynchronous serial interface (UART AUX)
- 1.9.3 USB interface
- 1.9.4 DDC (I2C) interface
- 1.9.1 Asynchronous serial interface (UART)
- 1.10 Audio interface
- 1.11 General Purpose Input/Output (GPIO)
- 1.12 Reserved pins (RSVD)
- 1.13 System features
- 1.13.1 Network indication
- 1.13.2 Antenna detection
- 1.13.3 Jamming detection
- 1.13.4 TCP/IP and UDP/IP
- 1.13.5 FTP
- 1.13.6 HTTP
- 1.13.7 SMTP
- 1.13.8 SSL
- 1.13.9 Dual stack IPv4/IPv6
- 1.13.10 Smart temperature management
- 1.13.11 AssistNow clients and GNSS integration
- 1.13.12 Hybrid positioning and CellLocateTM
- 1.13.13 Firmware upgrade Over AT (FOAT)
- 1.13.14 Firmware upgrade Over The Air (FOTA)
- 1.13.15 In-Band modem (eCall / ERA-GLONASS)
- 1.13.16 SIM Access Profile (SAP)
- 1.13.17 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using a Low Drop-Out (LDO) linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply (V_BCKP)
- 2.2.3 Interface supply (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Serial interfaces
- 2.6.1 Asynchronous serial interface (UART)
- 2.6.1.1 Guidelines for UART circuit design
- Providing the full RS-232 functionality (using the complete V.24 link)
- Providing the TXD, RXD, RTS, CTS and DTR lines only (not using the complete V.24 link)
- Providing the TXD, RXD, RTS and CTS lines only (not using the complete V.24 link)
- Providing the TXD and RXD lines only (not using the complete V24 link)
- Additional considerations
- 2.6.1.2 Guidelines for UART layout design
- 2.6.1.1 Guidelines for UART circuit design
- 2.6.2 Auxiliary asynchronous serial interface (UART AUX)
- 2.6.3 Universal Serial Bus (USB)
- 2.6.4 DDC (I2C) interface
- 2.6.1 Asynchronous serial interface (UART)
- 2.7 Audio interface
- 2.7.1 Analog audio interface
- 2.7.1.1 Guidelines for microphone and speaker connection circuit design (headset / handset modes)
- 2.7.1.2 Guidelines for microphone and loudspeaker connection circuit design (hands-free mode)
- 2.7.1.3 Guidelines for external analog audio device connection circuit design
- 2.7.1.4 Guidelines for analog audio layout design
- 2.7.2 Digital audio interface
- 2.7.1 Analog audio interface
- 2.8 General Purpose Input/Output (GPIO)
- 2.9 Reserved pins (RSVD)
- 2.10 Module placement
- 2.11 Module footprint and paste mask
- 2.12 Thermal guidelines
- 2.13 ESD guidelines
- 2.14 SARA-G350 ATEX integration in explosive atmospheres applications
- 2.15 Schematic for SARA-G3 and SARA-U2 series module integration
- 2.16 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 5 Product testing
- Appendix
- A Migration between LISA and SARA-G3 modules
- A.1 Overview
- A.2 Checklist for migration
- A.3 Software migration
- A.4 Hardware migration
- B Migration between SARA-G3 and SARA-U2
- C Glossary
- Related documents
- Revision history
- Contact
SARA-G3 and SARA-U2 series - System Integration Manual
UBX-13000995 - R08 Objective Specification Appendix
Page 169 of 188
The voltage level of all the digital interfaces of SARA and LISA modules is 1.8 V: this allows the direct connection
from a 1.8 V external device (e.g. application processor) to all the modules.
The following sections explain in detail all the points to consider during the migration between LISA and SARA
designs, implementing or not a nested design
For further details regarding SARA-G3 and LISA characteristics, usage, or settings, see the related module
datasheet [1], [4], [5], [6], System Integration Manual [7], [8], and AT commands manual [3], [9].
A.2 Checklist for migration
Have you chosen the optimal SARA-G3 module?
For quad-band GSM/GPRS, full feature set, select the SARA-G350 module.
For dual-band GSM/GPRS, full feature set, select the SARA-G340 module.
For quad-band GSM/GPRS, reduced feature set, select the SARA-G310 module.
For dual-band GSM/GPRS, reduced feature set, select the SARA-G300 module.
Check SARA-G3 modules hardware requirements
Check power capabilities of the external supply circuit: SARA-G3 modules require large current pulses in
connected-mode as well as LISA-U series modules when a 2G call is enabled. LISA-C2 series modules do
not require large current pulses due to the CDMA channel access technology.
Check supported bands for proper antenna circuit development: SARA-G3 modules frequency ranges
are within LISA-U modules ranges, but LISA-C2 modules range is quite different.
Check antenna detection requirements: SARA-G340 and SARA-G350 modules provide the antenna
detection function implementing an external application circuit between ANT_DET and ANT pins.
Check the module power-on requirements: Table 50 and relative section summarize differences
between SARA-G3 and LISA modules.
Check the module requirements to enter low power idle-mode: SARA-G300 and SARA-G310 modules
require a 32 kHz signal at EXT32K input, which for example can be provided by the 32K_OUT output.
Check serial interfaces requirements: SARA-G3 modules provide UART interface for AT command, data
communication, multiplexer functionality, FW upgrade over AT and provide auxiliary UART interface for
FW upgrade using the u-blox EasyFlash tool and for diagnostic purpose.
Check analog audio requirements: SARA-G340 and SARA-G350 modules do not provide DC blocking
capacitors at the MIC_P / MIC_N input pins and provide supply output and local ground for an external
microphone at the MIC_BIAS / MIC_GND pins.
Check digital audio requirements: SARA-G340 and SARA-G350 modules provide a 4-wire 1.8 V
interface supporting PCM and Normal I2S modes, master role and fixed sample rate.
Check internal active pull-up / down values at digital interface input pins and the current capability of
digital interface output pins, since they are slightly different between SARA-G3 and LISA modules.
Check SARA-G3 modules software requirements
Not all of the functionalities available with LISA modules are supported by all the SARA-G3 modules
versions. SARA-G300 and SARA-G310 modules do not support:
o Audio interfaces, DDC (I
2
C) interface, Antenna detection interface, GPIOs
o Low power idle-mode, if a 32 kHz signal at EXT32K input pin is not provided
o TCP/IP, UDP/IP, FTP, HTTP
o GNSS via Modem, AssistNow clients, Hybrid positioning and CellLocate
TM
functionalities
o Jamming detection