User's Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Serial interfaces
- 1.9.1 Asynchronous serial interface (UART)
- 1.9.1.1 UART features
- 1.9.1.2 UART AT interface configuration
- 1.9.1.3 UART signal behavior
- 1.9.1.4 UART and power-saving
- AT+UPSV=0: power saving disabled, fixed active-mode
- AT+UPSV=1: power saving enabled, cyclic idle/active-mode
- AT+UPSV=2: power saving enabled and controlled by the RTS line
- AT+UPSV=3: power saving enabled and controlled by the DTR line
- Wake up via data reception
- Additional considerations for SARA-U2 modules
- 1.9.1.5 Multiplexer protocol (3GPP 27.010)
- 1.9.2 Auxiliary asynchronous serial interface (UART AUX)
- 1.9.3 USB interface
- 1.9.4 DDC (I2C) interface
- 1.9.1 Asynchronous serial interface (UART)
- 1.10 Audio interface
- 1.11 General Purpose Input/Output (GPIO)
- 1.12 Reserved pins (RSVD)
- 1.13 System features
- 1.13.1 Network indication
- 1.13.2 Antenna detection
- 1.13.3 Jamming detection
- 1.13.4 TCP/IP and UDP/IP
- 1.13.5 FTP
- 1.13.6 HTTP
- 1.13.7 SMTP
- 1.13.8 SSL
- 1.13.9 Dual stack IPv4/IPv6
- 1.13.10 Smart temperature management
- 1.13.11 AssistNow clients and GNSS integration
- 1.13.12 Hybrid positioning and CellLocateTM
- 1.13.13 Firmware upgrade Over AT (FOAT)
- 1.13.14 Firmware upgrade Over The Air (FOTA)
- 1.13.15 In-Band modem (eCall / ERA-GLONASS)
- 1.13.16 SIM Access Profile (SAP)
- 1.13.17 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using a Low Drop-Out (LDO) linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply (V_BCKP)
- 2.2.3 Interface supply (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Serial interfaces
- 2.6.1 Asynchronous serial interface (UART)
- 2.6.1.1 Guidelines for UART circuit design
- Providing the full RS-232 functionality (using the complete V.24 link)
- Providing the TXD, RXD, RTS, CTS and DTR lines only (not using the complete V.24 link)
- Providing the TXD, RXD, RTS and CTS lines only (not using the complete V.24 link)
- Providing the TXD and RXD lines only (not using the complete V24 link)
- Additional considerations
- 2.6.1.2 Guidelines for UART layout design
- 2.6.1.1 Guidelines for UART circuit design
- 2.6.2 Auxiliary asynchronous serial interface (UART AUX)
- 2.6.3 Universal Serial Bus (USB)
- 2.6.4 DDC (I2C) interface
- 2.6.1 Asynchronous serial interface (UART)
- 2.7 Audio interface
- 2.7.1 Analog audio interface
- 2.7.1.1 Guidelines for microphone and speaker connection circuit design (headset / handset modes)
- 2.7.1.2 Guidelines for microphone and loudspeaker connection circuit design (hands-free mode)
- 2.7.1.3 Guidelines for external analog audio device connection circuit design
- 2.7.1.4 Guidelines for analog audio layout design
- 2.7.2 Digital audio interface
- 2.7.1 Analog audio interface
- 2.8 General Purpose Input/Output (GPIO)
- 2.9 Reserved pins (RSVD)
- 2.10 Module placement
- 2.11 Module footprint and paste mask
- 2.12 Thermal guidelines
- 2.13 ESD guidelines
- 2.14 SARA-G350 ATEX integration in explosive atmospheres applications
- 2.15 Schematic for SARA-G3 and SARA-U2 series module integration
- 2.16 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 5 Product testing
- Appendix
- A Migration between LISA and SARA-G3 modules
- A.1 Overview
- A.2 Checklist for migration
- A.3 Software migration
- A.4 Hardware migration
- B Migration between SARA-G3 and SARA-U2
- C Glossary
- Related documents
- Revision history
- Contact
SARA-G3 and SARA-U2 series - System Integration Manual
UBX-13000995 - R08 Objective Specification Design-in
Page 141 of 188
2.12 Thermal guidelines
SARA-G3 and SARA-U2 series module operating temperature range and module thermal resistance are
specified in the SARA-G3 series Data Sheet [1] or the SARA-U2 series Data Sheet [2].
The most critical condition concerning module thermal performance is the uplink transmission at maximum
power (data upload or voice call in connected-mode), when the baseband processor runs at full speed, radio
circuits are all active and the RF power amplifier is driven to higher output RF power. This scenario is not often
encountered in real networks; however the application should be correctly designed to cope with it.
During transmission at maximum RF power the SARA-G3 modules generate thermal power that can exceed 1 W,
whereas the SARA-U2 modules generate thermal power that can exceed 2 W: these are indicative values since
the exact generated power strictly depends on operating condition such as the cellular radio access technology,
the number of allocated TX slot, the transmitting frequency band, etc. The generated thermal power must be
adequately dissipated through the thermal and mechanical design of the application, in particular for SARA-U2
modules when operating in the 3G cellular radio access technology.
SARA-U2 modules implement an integrated self protection algorithm when operating in the 3G cellular
radio access technology: the module reduces the transmitted power when the temperature internally
sensed in the integrated 3G Power Amplifier approaches the maximum allowed junction temperature, to
guarantee device functionality and long life span.
The spreading of the Module-to-Ambient thermal resistance (Rth,M-A) depends on module operating condition:
the overall temperature distribution is influenced by the configuration of the active components during the
specific mode of operation and their different thermal resistance toward the case interface.
Mounting a SARA-G3 module on a 79 mm x 62 mm x 1.41 mm 4-Layers PCB with a high coverage of copper in
still air conditions
12
, the increase of the module temperature
13
in different modes of operation, referred to idle
state initial condition
14
, can be summarized as following:
~8 °C during a GSM voice call (1 TX slot, 1 RX slot) at max TX power
~12 °C during a GPRS data transfer (2 TX slots, 3 RX slots) at max TX power
The Module-to-Ambient thermal resistance value and the relative increase of module temperature will be
different for other mechanical deployments of the module, e.g. PCB with different dimensions and
characteristics, mechanical shells enclosure, or forced air flow.
The increase of thermal dissipation, i.e. the Module-to-Ambient thermal resistance reduction, will decrease the
temperature for internal circuitry of the SARA-G3 and SARA-U2 series modules for a given operating ambient
temperature. This improves device long-term reliability for applications operating at high ambient temperature.
A few hardware techniques may be used to reduce the Module-to-Ambient thermal resistance in the application:
Connect each GND pin with solid ground layer of the application board and connect each ground area of
the multilayer application board with complete via stack down to main ground layer
Provide a ground plane as wide as possible on the application board
Optimize antenna return loss, to optimize overall electrical performance of the module including a decrease
of module thermal power
12
Refer to SARA-G3 and SARA-U2 series Data Sheet [1] for the Rth,M-A value in this application condition
13
Temperature is measured by internal sensor of cellular module
14
Steady state thermal equilibrium is assumed. The module’s temperature in idle state can be considered equal to ambient temperature