User's Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Serial interfaces
- 1.9.1 Asynchronous serial interface (UART)
- 1.9.1.1 UART features
- 1.9.1.2 UART AT interface configuration
- 1.9.1.3 UART signal behavior
- 1.9.1.4 UART and power-saving
- AT+UPSV=0: power saving disabled, fixed active-mode
- AT+UPSV=1: power saving enabled, cyclic idle/active-mode
- AT+UPSV=2: power saving enabled and controlled by the RTS line
- AT+UPSV=3: power saving enabled and controlled by the DTR line
- Wake up via data reception
- Additional considerations for SARA-U2 modules
- 1.9.1.5 Multiplexer protocol (3GPP 27.010)
- 1.9.2 Auxiliary asynchronous serial interface (UART AUX)
- 1.9.3 USB interface
- 1.9.4 DDC (I2C) interface
- 1.9.1 Asynchronous serial interface (UART)
- 1.10 Audio interface
- 1.11 General Purpose Input/Output (GPIO)
- 1.12 Reserved pins (RSVD)
- 1.13 System features
- 1.13.1 Network indication
- 1.13.2 Antenna detection
- 1.13.3 Jamming detection
- 1.13.4 TCP/IP and UDP/IP
- 1.13.5 FTP
- 1.13.6 HTTP
- 1.13.7 SMTP
- 1.13.8 SSL
- 1.13.9 Dual stack IPv4/IPv6
- 1.13.10 Smart temperature management
- 1.13.11 AssistNow clients and GNSS integration
- 1.13.12 Hybrid positioning and CellLocateTM
- 1.13.13 Firmware upgrade Over AT (FOAT)
- 1.13.14 Firmware upgrade Over The Air (FOTA)
- 1.13.15 In-Band modem (eCall / ERA-GLONASS)
- 1.13.16 SIM Access Profile (SAP)
- 1.13.17 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using a Low Drop-Out (LDO) linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply (V_BCKP)
- 2.2.3 Interface supply (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Serial interfaces
- 2.6.1 Asynchronous serial interface (UART)
- 2.6.1.1 Guidelines for UART circuit design
- Providing the full RS-232 functionality (using the complete V.24 link)
- Providing the TXD, RXD, RTS, CTS and DTR lines only (not using the complete V.24 link)
- Providing the TXD, RXD, RTS and CTS lines only (not using the complete V.24 link)
- Providing the TXD and RXD lines only (not using the complete V24 link)
- Additional considerations
- 2.6.1.2 Guidelines for UART layout design
- 2.6.1.1 Guidelines for UART circuit design
- 2.6.2 Auxiliary asynchronous serial interface (UART AUX)
- 2.6.3 Universal Serial Bus (USB)
- 2.6.4 DDC (I2C) interface
- 2.6.1 Asynchronous serial interface (UART)
- 2.7 Audio interface
- 2.7.1 Analog audio interface
- 2.7.1.1 Guidelines for microphone and speaker connection circuit design (headset / handset modes)
- 2.7.1.2 Guidelines for microphone and loudspeaker connection circuit design (hands-free mode)
- 2.7.1.3 Guidelines for external analog audio device connection circuit design
- 2.7.1.4 Guidelines for analog audio layout design
- 2.7.2 Digital audio interface
- 2.7.1 Analog audio interface
- 2.8 General Purpose Input/Output (GPIO)
- 2.9 Reserved pins (RSVD)
- 2.10 Module placement
- 2.11 Module footprint and paste mask
- 2.12 Thermal guidelines
- 2.13 ESD guidelines
- 2.14 SARA-G350 ATEX integration in explosive atmospheres applications
- 2.15 Schematic for SARA-G3 and SARA-U2 series module integration
- 2.16 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 5 Product testing
- Appendix
- A Migration between LISA and SARA-G3 modules
- A.1 Overview
- A.2 Checklist for migration
- A.3 Software migration
- A.4 Hardware migration
- B Migration between SARA-G3 and SARA-U2
- C Glossary
- Related documents
- Revision history
- Contact
SARA-G3 and SARA-U2 series - System Integration Manual
UBX-13000995 - R08 Objective Specification Design-in
Page 125 of 188
The supply of the u-blox 1.8 V GNSS receiver can be switched off using an external p-channel MOSFET
controlled by the GPIO2 pin by means of a proper inverting transistor as shown in Figure 72, implementing the
“GNSS supply enable” function. If this feature is not required, the V_INT supply output can be directly
connected to the u-blox 1.8 V GNSS receiver, so that it will be switched on when V_INT output is enabled.
The V_INT supply output provides low voltage ripple (up to 15 mVpp) when the module is in active-mode or in
connected-mode, but it provides higher voltage ripple (up to 90 mVpp on SARA-G3 series, or up to 70 mVpp on
SARA-U2 series) when the module is in the low power idle-mode with power saving configuration enabled by
the AT+UPSV (see u-blox AT Commands Manual [3]).
According to the voltage ripple characteristic of the V_INT supply output:
The power saving configuration cannot be enabled to use V_INT output to properly supply any 1.8 V GNSS
receiver of the u-blox 6 family and any 1.8 V GNSS receiver of the u-blox 7 family with TCXO.
The power saving configuration can be enabled to use V_INT output to properly supply any 1.8 V GNSS
receiver of the u-blox 7 family without TCXO.
Additional filtering may be needed to properly supply an external LNA, depending on the characteristics of
the used LNA, adding a series ferrite bead and a bypass capacitor (e.g. the Murata BLM15HD182SN1 ferrite
bead and the Murata GRM1555C1H220J 22 pF capacitor) at the input of the external LNA supply line.
SARA-G340 / SARA-G350
SARA-U2 series
u-blox GNSS
1.8 V receiver
TxD1
EXTINT0
GPIO3
GPIO4
24
25
V_BCKP V_BCKP
2
SDA2
SCL2
23
GPIO2
SDA
SCL
26
27
VCC
1V8
C1
R3
4
V_INT
R5
R4
TP
T2
T1
R1 R2
1V8 1V8
GNSS data ready
GNSS RTC sharing
GNSS supply enabled
Figure 72: Application circuit for connecting SARA-G3 / SARA-U2 modules to u-blox 1.8 V GNSS receivers using V_INT as supply
Reference
Description
Part Number - Manufacturer
R1, R2
4.7 k Resistor 0402 5% 0.1 W
RC0402JR-074K7L - Yageo Phycomp
R3
47 k Resistor 0402 5% 0.1 W
RC0402JR-0747KL - Yageo Phycomp
R4
10 k Resistor 0402 5% 0.1 W
RC0402JR-0710KL - Yageo Phycomp
R5
100 k Resistor 0402 5% 0.1 W
RC0402JR-07100KL - Yageo Phycomp
T1
P-Channel MOSFET Low On-Resistance
IRLML6401 - International Rectifier or NTZS3151P - ON Semi
T2
NPN BJT Transistor
BC847 - Infineon
C1
100 nF Capacitor Ceramic X7R 0402 10% 16 V
GRM155R71C104KA01 - Murata
Table 38: Components for connecting SARA-G3 / SARA-U2 modules to u-blox 1.8 V GNSS receivers using V_INT as supply
For additional guidelines regarding the design of applications with u-blox 1.8 V GNSS receivers see the GNSS
Implementation Application Note [24] and to the Hardware Integration Manual of the u-blox GNSS receivers.