User's Manual
Table Of Contents
- Preface
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Supply interfaces
- 1.6 System function interfaces
- 1.7 Antenna interface
- 1.8 SIM interface
- 1.9 Serial interfaces
- 1.9.1 Asynchronous serial interface (UART)
- 1.9.1.1 UART features
- 1.9.1.2 UART AT interface configuration
- 1.9.1.3 UART signal behavior
- 1.9.1.4 UART and power-saving
- AT+UPSV=0: power saving disabled, fixed active-mode
- AT+UPSV=1: power saving enabled, cyclic idle/active-mode
- AT+UPSV=2: power saving enabled and controlled by the RTS line
- AT+UPSV=3: power saving enabled and controlled by the DTR line
- Wake up via data reception
- Additional considerations for SARA-U2 modules
- 1.9.1.5 Multiplexer protocol (3GPP 27.010)
- 1.9.2 Auxiliary asynchronous serial interface (UART AUX)
- 1.9.3 USB interface
- 1.9.4 DDC (I2C) interface
- 1.9.1 Asynchronous serial interface (UART)
- 1.10 Audio interface
- 1.11 General Purpose Input/Output (GPIO)
- 1.12 Reserved pins (RSVD)
- 1.13 System features
- 1.13.1 Network indication
- 1.13.2 Antenna detection
- 1.13.3 Jamming detection
- 1.13.4 TCP/IP and UDP/IP
- 1.13.5 FTP
- 1.13.6 HTTP
- 1.13.7 SMTP
- 1.13.8 SSL
- 1.13.9 Dual stack IPv4/IPv6
- 1.13.10 Smart temperature management
- 1.13.11 AssistNow clients and GNSS integration
- 1.13.12 Hybrid positioning and CellLocateTM
- 1.13.13 Firmware upgrade Over AT (FOAT)
- 1.13.14 Firmware upgrade Over The Air (FOTA)
- 1.13.15 In-Band modem (eCall / ERA-GLONASS)
- 1.13.16 SIM Access Profile (SAP)
- 1.13.17 Power saving
- 2 Design-in
- 2.1 Overview
- 2.2 Supply interfaces
- 2.2.1 Module supply (VCC)
- 2.2.1.1 General guidelines for VCC supply circuit selection and design
- 2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator
- 2.2.1.3 Guidelines for VCC supply circuit design using a Low Drop-Out (LDO) linear regulator
- 2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable Li-Ion or Li-Pol battery
- 2.2.1.5 Guidelines for VCC supply circuit design using a primary (disposable) battery
- 2.2.1.6 Additional guidelines for VCC supply circuit design
- 2.2.1.7 Guidelines for external battery charging circuit
- 2.2.1.8 Guidelines for external battery charging and power path management circuit
- 2.2.1.9 Guidelines for VCC supply layout design
- 2.2.1.10 Guidelines for grounding layout design
- 2.2.2 RTC supply (V_BCKP)
- 2.2.3 Interface supply (V_INT)
- 2.2.1 Module supply (VCC)
- 2.3 System functions interfaces
- 2.4 Antenna interface
- 2.5 SIM interface
- 2.6 Serial interfaces
- 2.6.1 Asynchronous serial interface (UART)
- 2.6.1.1 Guidelines for UART circuit design
- Providing the full RS-232 functionality (using the complete V.24 link)
- Providing the TXD, RXD, RTS, CTS and DTR lines only (not using the complete V.24 link)
- Providing the TXD, RXD, RTS and CTS lines only (not using the complete V.24 link)
- Providing the TXD and RXD lines only (not using the complete V24 link)
- Additional considerations
- 2.6.1.2 Guidelines for UART layout design
- 2.6.1.1 Guidelines for UART circuit design
- 2.6.2 Auxiliary asynchronous serial interface (UART AUX)
- 2.6.3 Universal Serial Bus (USB)
- 2.6.4 DDC (I2C) interface
- 2.6.1 Asynchronous serial interface (UART)
- 2.7 Audio interface
- 2.7.1 Analog audio interface
- 2.7.1.1 Guidelines for microphone and speaker connection circuit design (headset / handset modes)
- 2.7.1.2 Guidelines for microphone and loudspeaker connection circuit design (hands-free mode)
- 2.7.1.3 Guidelines for external analog audio device connection circuit design
- 2.7.1.4 Guidelines for analog audio layout design
- 2.7.2 Digital audio interface
- 2.7.1 Analog audio interface
- 2.8 General Purpose Input/Output (GPIO)
- 2.9 Reserved pins (RSVD)
- 2.10 Module placement
- 2.11 Module footprint and paste mask
- 2.12 Thermal guidelines
- 2.13 ESD guidelines
- 2.14 SARA-G350 ATEX integration in explosive atmospheres applications
- 2.15 Schematic for SARA-G3 and SARA-U2 series module integration
- 2.16 Design-in checklist
- 3 Handling and soldering
- 4 Approvals
- 5 Product testing
- Appendix
- A Migration between LISA and SARA-G3 modules
- A.1 Overview
- A.2 Checklist for migration
- A.3 Software migration
- A.4 Hardware migration
- B Migration between SARA-G3 and SARA-U2
- C Glossary
- Related documents
- Revision history
- Contact
SARA-G3 and SARA-U2 series - System Integration Manual
UBX-13000995 - R08 Objective Specification Design-in
Page 108 of 188
2.5 SIM interface
2.5.1.1 Guidelines for SIM circuit design
Guidelines for SIM cards, SIM connectors and SIM chips selection
The ISO/IEC 7816, the ETSI TS 102 221 and the ETSI TS 102 671 specifications define the physical, electrical and
functional characteristics of Universal Integrated Circuit Cards (UICC) which contains the Subscriber Identification
Module (SIM) integrated circuit that securely stores all the information needed to identify and authenticate
subscribers over the cellular network.
Removable UICC / SIM card contacts mapping is defined by ISO/IEC 7816 and ETSI TS 102 221as follows:
Contact C1 = VCC (Supply) It must be connected to VSIM
Contact C2 = RST (Reset) It must be connected to SIM_RST
Contact C3 = CLK (Clock) It must be connected to SIM_CLK
Contact C4 = AUX1 (Auxiliary contact) It must be left not connected
Contact C5 = GND (Ground) It must be connected to GND
Contact C6 = VPP (Programming supply) It must be connected to VSIM
Contact C7 = I/O (Data input/output) It must be connected to SIM_IO
Contact C8 = AUX2 (Auxiliary contact) It must be left not connected
A removable SIM card can have 6 contacts (C1 = VCC, C2 = RST, C3 = CLK, C5 = GND, C6 = VPP, C7 = I/O) or
8 contacts, providing also the auxiliary contacts C4 = AUX1 and C8 = AUX2 for USB interfaces and other uses.
Only 6 contacts are required and must be connected to the module SIM card interface as described above, since
the modules do not support the additional auxiliary features (contacts C4 = AUX1 and C8 = AUX2).
Removable SIM card are suitable for applications where the SIM changing is required during the product lifetime.
A SIM card holder can have 6 or 8 positions if a mechanical card presence detector is not provided, or it can
have 6+2 or 8+2 positions if two additional pins related to the normally-open mechanical switch integrated in
the SIM connector for the mechanical card presence detection are provided: select a SIM connector providing
6+2 or 8+2 positions if the optional SIM detection feature is required by the custom application, otherwise a
connector without integrated mechanical presence switch can be selected.
Solderable UICC / SIM chip contacts mapping (M2M UICC Form Factor) is defined by ETSI TS 102 671 as follows:
Package Pin 8 = UICC Contact C1 = VCC (Supply) It must be connected to VSIM
Package Pin 7 = UICC Contact C2 = RST (Reset) It must be connected to SIM_RST
Package Pin 6 = UICC Contact C3 = CLK (Clock) It must be connected to SIM_CLK
Package Pin 5 = UICC Contact C4 = AUX1 (Auxiliary contact) It must be left not connected
Package Pin 1 = UICC Contact C5 = GND (Ground) It must be connected to GND
Package Pin 2 = UICC Contact C6 = VPP (Programming supply) It must be connected to VSIM
Package Pin 3 = UICC Contact C7 = I/O (Data input/output) It must be connected to SIM_IO
Package Pin 4 = UICC Contact C8 = AUX2 (Auxiliary contact) It must be left not connected
A solderable SIM chip has 8 contacts and can provide also the auxiliary contacts C4 = AUX1 and C8 = AUX2 for
USB interfaces and other uses, but only 6 contacts are required and must be connected to the module SIM card
interface as described above, since SARA-G3 and SARA-U2 modules do not support the additional auxiliary
features (contacts C4 = AUX1 and C8 = AUX2).
Solderable SIM chips are suitable for M2M applications where it is not required to change the SIM once installed.