Integration Manual
Table Of Contents
- Document Information
- Contents
- 1 System description
- 1.1 Overview
- 1.2 Architecture
- 1.3 Pin-out
- 1.4 Operating modes
- 1.5 Power management
- 1.6 System functions
- 1.7 RF connection
- 1.8 (U)SIM interface
- 1.9 Serial communication
- 1.9.1 Serial interfaces configuration
- 1.9.2 Asynchronous serial interface (UART)
- 1.9.2.1 UART features
- 1.9.2.2 UART signal behavior
- 1.9.2.3 UART and power-saving
- 1.9.2.4 UART application circuits
- Providing the full RS-232 functionality (using the complete V.24 link)
- Providing the TxD, RxD, RTS, CTS and DTR lines only (not using the complete V.24 link)
- Providing the TxD, RxD, RTS and CTS lines only (not using the complete V.24 link)
- Providing the TxD and RxD lines only (not using the complete V24 link)
- Additional considerations
- 1.9.3 USB interface
- 1.9.4 SPI interface
- 1.9.5 MUX protocol (3GPP TS 27.010)
- 1.10 DDC (I2C) interface
- 1.11 Audio Interface
- 1.12 General Purpose Input/Output (GPIO)
- 1.13 Reserved pins (RSVD)
- 1.14 Schematic for LISA-U2 module integration
- 1.15 Approvals
- 1.15.1 European Conformance CE mark
- 1.15.2 US Federal Communications Commission notice
- 1.15.3 Innovation, Science, Economic Development Canada notice
- 1.15.4 Australian Regulatory Compliance Mark
- 1.15.5 ICASA Certification
- 1.15.6 KCC Certification
- 1.15.7 ANATEL Certification
- 1.15.8 CCC Certification
- 1.15.9 Giteki Certification
- 2 Design-In
- 3 Features description
- 3.1 Network indication
- 3.2 Antenna detection
- 3.3 Jamming Detection
- 3.4 TCP/IP and UDP/IP
- 3.5 FTP
- 3.6 HTTP
- 3.7 SSL/TLS
- 3.8 Dual stack IPv4/IPv6
- 3.9 AssistNow clients and GNSS integration
- 3.10 Hybrid positioning and CellLocate®
- 3.11 Control Plane Aiding / Location Services (LCS)
- 3.12 Firmware update Over AT (FOAT)
- 3.13 Firmware update Over the Air (FOTA)
- 3.14 In-Band modem (eCall / ERA-GLONASS)
- 3.15 SIM Access Profile (SAP)
- 3.16 Smart Temperature Management
- 3.17 Bearer Independent Protocol
- 3.18 Multi-Level Precedence and Pre-emption Service
- 3.19 Network Friendly Mode
- 3.20 Power saving
- 4 Handling and soldering
- 5 Product Testing
- Appendix
- A Migration from LISA-U1 to LISA-U2 series
- A.1 Checklist for migration
- A.2 Software migration
- A.2.1 Software migration from LISA-U1 series to LISA-U2 series modules
- A.3 Hardware migration
- A.3.1 Hardware migration from LISA-U1 series to LISA-U2 series modules
- A.3.2 Pin-out comparison LISA-U1 series vs. LISA-U2 series
- A.3.3 Layout comparison LISA-U1 series vs. LISA-U2 series
- B Glossary
- Related documents
- Revision history
- Contact
LISA-U2 series - System Integration Manual
UBX-13001118 - R25 Handling and soldering Page 160 of 182
4.2.3 Optical inspection
After soldering the LISA-U2 modules, inspect the modules optically to verify that the module is
accurately aligned and centered.
4.2.4 Cleaning
Cleaning the soldered modules is not recommended. Residues underneath the modules cannot be
easily removed with a washing process.
Cleaning with water will lead to capillary effects where water is absorbed in the gap between the
baseboard and the module. The combination of residues of soldering flux and encapsulated water
leads to short circuits or resistor-like interconnections between neighboring pads. Water will also
damage the sticker and the ink-jet printed text.
Cleaning with alcohol or other organic solvents can result in soldering flux residues flooding into
the two housings, areas that are not accessible for post-wash inspections. The solvent will also
damage the sticker and the ink-jet printed text.
Ultrasonic cleaning will permanently damage the module, in particular the quartz oscillators.
For best results, use a "no clean" soldering paste and eliminate the cleaning step after the soldering.
4.2.5 Repeated reflow soldering
Repeated reflow soldering processes and soldering the module upside-down are not recommended.
Boards with components on both sides may require two reflow cycles. In this case, the module should
always be placed on the side of the board that is submitted into the last reflow cycle. The reason for
this (besides others) is the risk of the module falling off due to the significantly higher weight in
relation to other components.
☞ u-blox gives no warranty against damages to LISA-U2 modules caused by performing more than
a total of two reflow soldering processes (one reflow soldering process to mount the LISA-U2
module, plus one reflow soldering process to mount other parts).
4.2.6 Wave soldering
Boards with combined through-hole technology (THT) components and surface-mount technology
(SMT) devices require wave soldering to solder the THT components. No more than one wave
soldering process is allowed for a board with a LISA-U2 module already populated on it.
Wave soldering process is not recommended for LISA-U2 series LCC modules.
⚠ Performing a wave soldering process on the module can result in severe damage to the device!
☞ u-blox gives no warranty against damages to LISA-U2 modules caused by performing more than
a total of two soldering processes (one reflow soldering process to mount the LISA-U2 module,
plus one wave soldering process to mount other parts).
4.2.7 Hand soldering
Hand soldering is not recommended.