User's Manual
Table Of Contents
- Part A – Preface
- Safety Information
- Revision History
- Important Information
- Compliance Information
- Part B – Feature Overview
- Introduction
- Features and Benefits
- Q Data Radio Range
- Part C – System Topologies & Operating Modes
- System Topologies
- Operating Modes
- Part D – Feature Detail
- Hardware
- Efficiency and Bandwidth
- Connectivity
- Ease of Use
- Security
- Part E – Radio Planning and Design
- Radio Path analysis
- BER & Fade Margin
- Radio Accessories
- RF Feeders and Protection
- Part F – Quick Reference Guide
- Introduction
- Half Duplex Radio - QR450
- Full Duplex Radio - QB450
- Hot Standby Half Duplex Radio - QP450
- Hot Standby Full Duplex Radio - QH450
- LED indicators
- Connecting Antennas
- Communication Ports
- Activating Transmitter
- Factory Default
- Digital I/O
- Connecting to Web User Interface (WUI)
- Resolving Ethernet Connection Issues
- Part G– Quick Start Guide
- Step-by-Step Point to Point Setup
- Step-by-Step eDiags Setup
- System Topology Configuration
- Serial and MODBUS
- Single Frequency (Simplex) Mode
- E-Series Emulation Mode
- Part H – Advanced
- Connectivity
- Ease of Use
- Security
- Part I – Installation & Commissioning
- Optimising the Antenna for Rx Signal
- Commissioning
- Part J – Firmware Updating and Maintenance
- Firmware Updating
- Global Firmware Updating
- Fuse Replacement - QR450
- Part K – Open Source License Acknowledgements
- Part L – Support Options
16 Document Number: 0100SM1401 Issue: 05-15
Operating Modes
Introduction
This section assumes the reader has an operational understanding of industrial Ethernet.
A typical Ethernet network consists of a number of IP devices, all which share the requirement of data communication. In
order for a pair of devices within an Ethernet based network to communicate with one another, they need to be able to
address data to a specific destination (in this case, each other).
MAC Address - MAC addresses identify Ethernet devices on a network when operating at Layer-2. All Ethernet ports in
devices have their own unique media access control (MAC) address. There are special MAC addresses used for broadcast
and Multicast messages.
IP Address - An IP address is a numerical label assigned to each device (e.g., Radio, RTU, SCADA Host) participating in a
computer network that uses the Internet Protocol for communication.
An IP address serves two principal functions:
• Host or network interface identification and
• Location addressing.
Subnet - A subnet is a subdivision of an IP network. It allows a network designer to segment a large IP network into
smaller, manageable sub networks. This can assist in the allocation of IP addresses and the management of network
bandwidth.
Subnet Mask - Together with the IP address, the subnet mask is used to determine which subnet a device belongs to.
Gateway - A gateway forwards IP messages between devices on different subnets in an IP network. A gateway uses
configurable routing rules to determine where to forward an IP message.
Route - A route is a rule that indicates where an IP message needs to be sent in order to get to a specific device on an IP network.
Transparent Bridge Mode
The Q data radios can be configured to operate in a transparent bridge mode. This mode transports all data as layer 2 Ethernet
traffic over the radio network. Each radio will behave like a layer 2 Ethernet switch, transparently forwarding data, based on rules,
dynamically determined from device MAC addresses. Although traffic is transported at layer 2, each radio requires an IP address
in order for a user to access radio management features (web server/telnet/diagnostics/etc..).
The example below shows a typical PTMP/R topology, with all radios operating in bridge mode.
From an IP network perspective, each radio within the topology above, effectively looks like an Ethernet switch. See the
example below.
Part C – System Topologies & Operating Modes