User's Manual
Table Of Contents
- Part A – Preface
- Safety Information
- Revision History
- Important Information
- Compliance Information
- Part B – Feature Overview
- Introduction
- Features and Benefits
- Q Data Radio Range
- Part C – System Topologies & Operating Modes
- System Topologies
- Operating Modes
- Part D – Feature Detail
- Hardware
- Efficiency and Bandwidth
- Connectivity
- Ease of Use
- Security
- Part E – Radio Planning and Design
- Radio Path analysis
- BER & Fade Margin
- Radio Accessories
- RF Feeders and Protection
- Part F – Quick Reference Guide
- Introduction
- Half Duplex Radio - QR450
- Full Duplex Radio - QB450
- Hot Standby Half Duplex Radio - QP450
- Hot Standby Full Duplex Radio - QH450
- LED indicators
- Connecting Antennas
- Communication Ports
- Activating Transmitter
- Factory Default
- Digital I/O
- Connecting to Web User Interface (WUI)
- Resolving Ethernet Connection Issues
- Part G– Quick Start Guide
- Step-by-Step Point to Point Setup
- Step-by-Step eDiags Setup
- System Topology Configuration
- Serial and MODBUS
- Single Frequency (Simplex) Mode
- E-Series Emulation Mode
- Part H – Advanced
- Connectivity
- Ease of Use
- Security
- Part I – Installation & Commissioning
- Optimising the Antenna for Rx Signal
- Commissioning
- Part J – Firmware Updating and Maintenance
- Firmware Updating
- Global Firmware Updating
- Fuse Replacement - QR450
- Part K – Open Source License Acknowledgements
- Part L – Support Options
132 Document Number: 0100SM1401 Issue: 05-15
Commissioning
When commissioning an Ethernet radio network, ensure
that the incoming received signal strength (RSSI) is
adequate to provide reliable communications.
In order for a system to operate reliably, an “adequate”
signal level needs to be present which allows for fading
and interference.
An adequate level is typically 20 to 30dB above the
minimum threshold of the receiving device. Using the
dynamic RF data rate can allow the minimum threshold
specification to be taken from the lowest available data
rate of the bandwidth being used.
Should this level not be achieved, then either;
1. A more suitable location to mount the antenna.
2. The antenna will need to be mounted higher in a more
prominent location to achieve as close as possible to
clear line of site.
HTML Diagnostics
Overview
After the Q data radios have been configured and installed,
the next step in the commissioning process is to review
the HTML diagnostics available in every radio. Diagnostic
parameters available are shown in the image below:
Unit Specific:
Date: Specifies the current date and time. For the
date and time to be correct the radio needs
to be configured to synchronise with a NTP
Time Server.
CPU Load: Specifies the amount of CPU load the
linux based kernel is experiencing.
Network Specific:
ETH 1 Rx Packets: The number of Ethernet packets
received on ETH1.
ETH 1 Rx Bytes: The number of bytes received on
ETH1.
ETH 1 Tx Packets: The number of Ethernet packets
transmitted on ETH1.
ETH 1 Tx Bytes: The number of Ethernet packets
received on ETH1.
(The same applies for ETH2)
Radio Specific:
Radio Rx Packets: The number of packets received by
the radio.
Radio Rx Bytes: The number of bytes received by the
radio.
Radio Tx Packets: The number of packets transmitted
by the radio.
Radio Tx Bytes: The number of bytes transmitted by
the radio.
Radio Reverse Power (dBm) : TX Reverse power
measured in dBm.
Radio Forward Power (dBm): TX Forward power
measured in dBm.
Radio RSSI (dBm): The RSSI (Received Signal
Strength Indicator) measured in dBm.
Supply Volts: The DC supply voltage measured in dBm.
Radio Temperature (C): The internal radio
temperature measured in degrees Celsius.
Retired Packets: The number of packets that were
discarded after ARQ retries and time outs
were exhausted.
Failed Packets: The number of incoming packets
that have failed CRC check and have been
discarded.
Part I – Installation & Commissioning