User's Manual
Table Of Contents
- Part A – Preface
- Safety Information
- Revision History
- Important Information
- Compliance Information
- Part B – Feature Overview
- Introduction
- Features and Benefits
- Q Data Radio Range
- Part C – System Topologies & Operating Modes
- System Topologies
- Operating Modes
- Part D – Feature Detail
- Hardware
- Efficiency and Bandwidth
- Connectivity
- Ease of Use
- Security
- Part E – Radio Planning and Design
- Radio Path analysis
- BER & Fade Margin
- Radio Accessories
- RF Feeders and Protection
- Part F – Quick Reference Guide
- Introduction
- Half Duplex Radio - QR450
- Full Duplex Radio - QB450
- Hot Standby Half Duplex Radio - QP450
- Hot Standby Full Duplex Radio - QH450
- LED indicators
- Connecting Antennas
- Communication Ports
- Activating Transmitter
- Factory Default
- Digital I/O
- Connecting to Web User Interface (WUI)
- Resolving Ethernet Connection Issues
- Part G– Quick Start Guide
- Step-by-Step Point to Point Setup
- Step-by-Step eDiags Setup
- System Topology Configuration
- Serial and MODBUS
- Single Frequency (Simplex) Mode
- E-Series Emulation Mode
- Part H – Advanced
- Connectivity
- Ease of Use
- Security
- Part I – Installation & Commissioning
- Optimising the Antenna for Rx Signal
- Commissioning
- Part J – Firmware Updating and Maintenance
- Firmware Updating
- Global Firmware Updating
- Fuse Replacement - QR450
- Part K – Open Source License Acknowledgements
- Part L – Support Options
106 Document Number: 0100SM1401 Issue: 05-15
Configuration
The diagram below provides an example of how an alarm state can be deemed ‘Normal’ or ‘Critical’. The example shows the
value thresholds for the normal and critical state of the DC supply in a QB. Once a DC supply measurement is taken, the
behavior of the alarm state reporting structure is as follows:
• Normal: If the value falls within the green zone (11 to 30 VDC) the alarm state can display ‘normal’ as this is an acceptable
operating value.
• Critical: If the value falls within the red zone (below 11 VDC or above 30 VDC) the alarm state can display ‘critical’ as these
values are the hardware limits of the radio (the radio may switch off or self protect depending on the extremity of the critical
value).
Warning State
Enable/Disable the warning state for the respective alarm being configured. The warning state can help prevent a critical
alarm from occurring, by indicating an alarm value has been measured outside of ‘normal’ operating conditions, but, still
within ‘critical’ operating conditions. This means a warning alarm can be active, before a critical alarm state is reached.
Once the warning alarm is enabled, a limit/threshold should be configured. The diagram below provides an example of how
the warning alarm is implemented into the alarm state reporting structure for the DC supply in a QB. Once a DC supply
measurement is taken, the behavior of the alarm state reporting structure is as follows:
• Normal: If the value falls within the green zone (12 to 28 V) the alarm state can display ‘normal’ as this is an acceptable
operating value.
• Warning: If the value falls within the amber zone (11 to 12 V OR 28 to 30V) the alarm state can display ‘warning’ as this is
has been configured by the user to be outside of normal operating conditions.
• Critical: If the value falls within the red zone (below 11 V or above 30 V) the alarm state can display ‘critical’ as these values
are the hardware limits of the radio (the radio may switch off or self protect depending on the extremity of the critical
value).
DC Supply (V)
30 V
11 V
Normal
Critical
Critical
0 V
Time (T)
DC Supply (V)
30 V
11 V
Normal
Critical
Critical
0 V
Time (T)
Warning
Warning
12 V
28 V
Alarm State Diagram 1
Alarm State Diagram 2
Part H – Advanced