User Manual
Table Of Contents
- 1 Features
- 2 First Steps with TMCL
- 3 TMCL and the TMCL-IDE — An Introduction
- 3.1 Binary Command Format
- 3.2 Reply Format
- 3.3 Standalone Applications
- 3.4 TMCL Command Overview
- 3.5 TMCL Commands by Subject
- 3.6 Detailed TMCL Command Descriptions
- 3.6.1 ROR (Rotate Right)
- 3.6.2 ROL (Rotate Left)
- 3.6.3 MST (Motor Stop)
- 3.6.4 MVP (Move to Position)
- 3.6.5 SAP (Set Axis Parameter)
- 3.6.6 GAP (Get Axis Parameter)
- 3.6.7 SGP (Set Global Parameter)
- 3.6.8 GGP (Get Global Parameter)
- 3.6.9 STGP (Store Global Parameter)
- 3.6.10 RSGP (Restore Global Parameter)
- 3.6.11 RFS (Reference Search)
- 3.6.12 SIO (Set Output)
- 3.6.13 GIO (Get Input)
- 3.6.14 CALC (Calculate)
- 3.6.15 COMP (Compare)
- 3.6.16 JC (Jump conditional)
- 3.6.17 JA (Jump always)
- 3.6.18 CSUB (Call Subroutine)
- 3.6.19 RSUB (Return from Subroutine)
- 3.6.20 WAIT (Wait for an Event to occur)
- 3.6.21 STOP (Stop TMCL Program Execution – End of TMCL Program)
- 3.6.22 SCO (Set Coordinate)
- 3.6.23 GCO (Get Coordinate)
- 3.6.24 CCO (Capture Coordinate)
- 3.6.25 ACO (Accu to Coordinate)
- 3.6.26 CALCX (Calculate using the X Register)
- 3.6.27 AAP (Accu to Axis Parameter)
- 3.6.28 AGP (Accu to Global Parameter)
- 3.6.29 CLE (Clear Error Flags)
- 3.6.30 EI (Enable Interrupt)
- 3.6.31 DI (Disable Interrupt)
- 3.6.32 VECT (Define Interrupt Vector)
- 3.6.33 RETI (Return from Interrupt)
- 3.6.34 Customer specific Command Extensions (UF0…UF7 – User Functions)
- 3.6.35 Request Target Position reached Event
- 3.6.36 TMCL Control Commands
- 4 Axis Parameters
- 5 Global Parameters
- 6 Hints and Tips
- 7 TMCL Programming Techniques and Structure
- 8 Figures Index
- 9 Tables Index
- 10 Supplemental Directives
- 11 Revision History

TMCM-3212 TMCL
™
Firmware Manual • Firmware Version V1.07 | Document Revision V1.04 • 2017-JUN-08
24 / 103
3.6.4 MVP (Move to Position)
With this command the motor will be instructed to move to a specified relative or absolute position. It
will use the acceleration/deceleration ramp and the positioning speed programmed into the unit. This
command is non-blocking - that is, a reply will be sent immediately after command interpretation and
initialization of the motion controller. Further commands may follow without waiting for the motor
reaching its end position. The maximum velocity and acceleration as well as other ramp parameters are
defined by the appropriate axis parameters. For a list of these parameters please refer to section 4.
The range of the MVP command is 32 bit signed (-2147483648. . . 2147483647). Positioning can be inter-
rupted using MST, ROL or ROR commands.
Three operation types are available:
• Moving to an absolute position in the range from -2147483648. . . 2147483647 (−2
31
...2
31
− 1).
•
Starting a relative movement by means of an offset to the actual position. In this case, the new
resulting position value must not exceed the above mentioned limits, too.
• Moving the motor to a (previously stored) coordinate (refer to SCO for details).
Note
The distance between the actual position and the new position must not be
more than 2147483647 (2
31
−
1) microsteps. Otherwise the motor will run in
the opposite direction in order to take the shorter distance (caused by 32 bit
overflow).
Internal function: A new position value is transferred to the axis parameter #0 (target position).
Related commands: SAP, GAP, SCO, GCO, CCO, ACO, MST.
Mnemonic: MVP <ABS|REL|COORD>, <axis>, <position|offset|coordinate>
Binary Representation
Instruction Type Motor/Bank Value
4
0 – ABS – absolute 0. . . 2 <position>
1 – REL – relative 0. . . 2 <offset>
2 – COORD – coordinate 0. . . 255 <coordinate number (0..20)>
Reply in Direct Mode
Status Value
100 - OK don’t care
Example
Move motor 0 to position 90000.
Mnemonic: MVP ABS, 0, 90000
©2017 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany
Terms of delivery and rights to technical change reserved.
Download newest version at www.trinamic.com
Read entire documentation.