INTEGRATED CIRCUITS Dedicated Motion Controller for 2-/3-Phase PMSM TMC4671 Datasheet IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 The TMC4671 is a fully integrated servo controller, providing Field Oriented Control for BLDC/PMSM and 2-phase Stepper Motors as well as DC motors and voice coils. All control functions are implemented in hardware. Integrated ADCs, position sensor interfaces, position interpolators, enable a fully functional servo controller for a wide range of servo applications.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 2 / 142 Contents 1 Order Codes 5 2 Functional Summary 6 3 FOC Basics 3.1 Why FOC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 What is FOC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Why FOC as pure Hardware Solution? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 How does FOC work? . . . .
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.5 4.6 4.7 4.8 4.9 Analog Signal Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.1 FOC3 - Stator Coil Currents I_U, I_V, I_W and associated Voltages U_U, U_V, U_W 4.5.2 FOC2 - Stepper Coil Currents I_X, I_Y and associated Voltages U_X, U_Y . . . . . 4.5.3 FOC1 - DC Motor Coil Current I_X1, I_X2, and associated Voltage U_X1, U_X2 . . 4.5.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 6.3.2 Determination of Direction of Rotation and Phase Shift of Angles . Selection of Position Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.1 Selection of FOC sensor for PHI_E . . . . . . . . . . . . . . . . . . . 6.4.2 Selection of sensor for VELOCITY . . . . . . . . . . . . . . . . . . . . 6.4.3 Selection of sensor for POSITION . . . . . . . . . . . . . . . . . . . . 6.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 1 Order Codes Order Code Description Size TMC4671-LA TMC4671 FOC Servo Controller IC 10.5mm x 6.5mm TMC4671-ES2 TMC4671-LA 1936 35735 10.5mm x 6.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 3 8 / 142 FOC Basics This section gives a short introduction into some basics of Field Oriented Control (FOC) of electric motors. 3.1 Why FOC? The Field Oriented Control (FOC), alternatively named Vector Control (VC), is a method for the most energy-efficient way of turning an electric motor. 3.2 What is FOC? The Field Oriented Control was independently developed by K.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 9 / 142 block and separate controller box wired with motor cable and encoder cable. The high integration of FOC, together with velocity controller and position controller as a SoC, enables the FOC as a standard peripheral component that transforms digital information into physical motion.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 3.5.1 Coordinate Transformations - Clarke, Park, iClarke, iPark The FOC requires different coordinate transformations formulated as a set of matrix multiplications. These are the Clarke Transformation (Clarke), the Park Transformation (Park), the inverse Park Transformation (iPark) and the inverse Clarke Transformation (iClarke).
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 11 / 142 3.5.4 IgainADC[A/LSB] - ADC Integer Current Value to Real World Unit Together with ADC_I0_SCALE and ADC_I0_OFFSET and ADC_I1_SCALE and ADC_I1_OFFSET, measured ADC currents represented as 16 bit signed interger numbers (s16) represent real world currents. Multiplication of integer current value with gain scaling factor in unit Ampere per LSB (Low Significant Bit) gives the real world value of current in unit Ampere.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 3.5.7.1 12 / 142 Direction of Motion - Magnetic Field vs. Position Sensor For FOC it is essential, that the direction of revolution of the magnetic field is compatible with the direction of motion of the rotor position reconstructed from encoder signals: For revolution of magnetic field with positive direction, the decoder position needs to turn into the same positive direction.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 13 / 142 enabling the determination of the direction of revolution. Some encoder vendors associate counts per revolution (CPR) or pulses per revolution associated to PPR acronym. The TMC4671 uses Positions Per Revolution (PPR) as encoder parameter. 3.5.9 Proportional Integral (PI) Controllers for Closed Loop Current Control Last but not least, two PI controllers are required for the FOC.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 3.5.11 14 / 142 Orientations, Models of Motors, and Coordinate Transformations The orientation of magnetic axes (U, V, W for FOC3 resp. X, Y for FOC2) is essential for the FOC together with the relative orientation of the rotor. Here, the rotor is modeled by a bar magnet with one pole pair (n_pole_pairs = 1) with magnetic axis in north-south direction.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4 15 / 142 Functional Description The TMC4671 is a fully integrated controller for field-oriented control (FOC) of either one 3-phase brushless motor (FOC3) or one 2-phase stepper motor (FOC2) or, as well as 1-phase DC motor or voice coil actuator (FOC1).
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 16 / 142 The ADC engine interfaces the integrated ADC channels and maps raw ADC values to signed 16 bit (s16) values for the inner FOC current control loop based on programmable offset and scaling factors. The FOC torque PI controller forms the inner base component including required transformations (Clark, Park, inverse Park, inverse Clark). All functional blocks are pure hardware. 4.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 Figure 8: SPI Timing SPI Interface Timing Characteristics, fCLK = 25MHz Parameter Symbol Min tCC 62.5 ns nSCS high time tCSH 62.5 ns nSCS low time tCSL 62.5 ns SCK high time tCH 62.5 ns SCK low time tCL 62.5 ns SCK low time tCL 62.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 Info 18 / 142 SPI write access can be performed up to 8 MHz SPI clock frequency. SPI read access can be performed up to 8 MHz SPI clock frequency if a pause of at least 500 ns is inserted after transfer of the address byte of the SPI datagram. Without a pause of 500 ns after address byte, SPI read access can be performed up to 2 MHz SPI clock frequency.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.2.2 19 / 142 TRINAMIC Real-Time Monitoring Interface (SPI Master) The TRINAMIC Real-Time Monitoring Interface (RTMI, SPI Master) is an additional fast interface enabling real-time identification of motor and system parameters. The user can check configuration and access registers in the TMC4671 via the TMCL-IDE with its build-in configuration wizards for FOC setup in parallel to the user firmware.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.2.3 20 / 142 UART Interface The UART interface is a simple three pin (GND, RxD, TxD) 3.3V UART interface with up to 3 Mbit/s transfer speed with one start bit, eight data bits, one stop bit, and no parity bits (1N8). The default speed is 9600 bps. Other supported speeds are 115200 bps, 921600 bps, and 3000000 bps. With an 3.3V-UART-to-USB adapter cable (e.g. FTDI TTL-232R-RPi), the user can use the full maximum data rate.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.2.4 Step/Direction Interface The user can manipulate the target position via the step direction interface. It can be enabled by setting the STEP_WIDTH (s32) register to a proper step width. The power-on default value of STEP_WIDTH is 0 that causes position target update with 0 step width that is no stepping.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 A duty cycle of 50% equals an input value of 32768. With the offset and scaling factors it can be mapped to desired range. 4.3 Numerical Representation, Electrical Angle, Mechanical Angle, and Pole Pairs The TMC4671 uses different numerical representations for different parameters, measured values, and interim results.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 Hexadecimal Value u16 s16 q8.8 q4.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 Figure 14: N_POLE_PAIRS - Number of Pole Pairs (Number of Poles) 4.3.3 Numerical Representation of Angles PHI Electrical angles and mechanical angles are represented as 16 bit integer values. One full revolution of 360 deg is equivalent to 216 = 65536 steps. Any position coming from a sensor is mapped to this integer range. Adding an offset of PHI_OFFSET causes a rotation of an angle PHI_OFFSET/216 .
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 u16 s16 PHI[°] ±PHI[°] 0x5555h 21845 21845 120.0 -240.0 0x6AAAh 27306 27768 150.0 -210.0 0x8000h 32768 -32768 180.0 -180.0 0x9555h 38229 -27307 210.0 -150.0 0xAAAAh 43690 -21846 240.0 -120.0 0xC000h 49152 -16384 270.0 -90.0 0xD555h 54613 -10923 300.0 -60.0 0xEAAAh 60074 -5462 330.0 -30.0 Hexadecimal Value Table 6: Examples of u16, s16, q8.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.4.2 26 / 142 ADC for analog Hall signals or analog sin-cos-encoders AENC_UX, AENC_VN, AENC_WY For analog Hall and for analog encoder, the ADC engine has three disserential input channles (AENC_UX_POS, AENC_UX_NEG), (AENC_VN_POS, AENC_VN_NEG), and AENC_WY_POS, AENC_WY_NEG).
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.4.7 ADC RAW values The sampled raw ADC values are available for read out by the user. This is important during the system setup phase to determine offset and scaling factors. 4.4.8 ADC_SCALE and ADC_OFFSET The FOC engine expects offset corrected ADC current values, scaled into the FOC engine’s 16 bit (s16) fixed point representation.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.4.11 Internal Delta Sigma ADC Input Stage Configuration ADC channels can be configured either as differential ended analog inputs (ADC_I0, ADC_I1, AENC_UX, AENC_VN, AENC_WY) or as single ended analog inputs (ADC_VM, AGPI_A, AGPI_B). Additionally, the ADC all channels can be set to fixed voltages (0V, VREF/4, VREF/2, 3*VREF/4) for calibrations purposes. STAGE_CFG(n+2:n) CONFIGURATION DESCRIPTION COMMENT 0 INP vs.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 29 / 142 Figure 16: Input Voltage Ranges of internal Delta Sigma ADC Channels) Figure 16 illustrates typical relation between input voltage and corresponding raw ADC output. For differential operation the input range between 25% and 75% corresponds to voltage values between 1.25V to 3.75V. This is the recommended operation area of the ADC.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.4.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 Figure 17: Delta Sigma ADC Configurations dsADC_CONFIG (internal: ANALOG vs. external: MCLKO, MCLKI, MDAC) dsADC_CONGIG Description NC_MCLKO_MCLKI_MDAC VIN_MDAT ANALOG integrated internal ADC mode, VIN_MDAT is analog input VIN MCLK not connected (NC) VIN (analog) MCLKO external dsModulator (e.g. AD7403) with MCLK input driven by MCLKO MCLK output MDAT input MCLKI external dsModulator (e.g.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.4.14.2 Decimation Parameter MDEC The high oversampled single bit delta sigma data stream (MDAT) is digitally filtered by Sinc3 filters. To get raw ADC data, the actual digitally filtered values need to be sampled periodically with a lower rate called decimation ratio. The decimation is controlled by parameter MDEC_A for ADC group A and MDEC_B for ADC group B.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.4.15 Internal Delta Sigma Modulators - Mapping of V_RAW to ADC_RAW Generally, delta sigma modulators work best for a typical input voltage range of 25% V_MAX . . . 75% V_MAX (unsigned 0% ... 100%) resp. -75% V_MAX . . . +75% V_MAX (signed -100% ... +100%). For the integrated delta sigma modulators, this input voltage operation range is recommended with V_MAX = 5V where V_MAX = 3.3V is possible.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.4.16 External Delta Sigma Modulator Interface The TMC4671 is equipped with integrated digital filters for extraction of ADC raw values from delta sigma data stream for both internal and external delta sigma modulators.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 For external Delta Sigma R-C-R-CMP modulators, one gets the Delta Sigma input voltage mapping according to table 16. The support of low-cost external comparators used as first order delta sigmal modulators is intended as an generic analog interface option for compatibility of the TMC4671 core in case it would be embedded within a pure digital technology environment. Vmin[V] Vref[V] Vmax[V] VIN[V] DUTY[%] 0.0 1.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.5 Analog Signal Conditioning The range of measured coil currents, resp. the measured voltages of sense resistors, needs to be mapped to the valid input voltage range of the delta sigma ADC inputs. This analog preprocessing is the task of the analog signal conditioning. 4.5.0.1 Chain of Gains for ADC Raw Values An ADC raw value is a result of a chain of gains that determine it.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 U (φ ) = UD U e UV (φe ) = UD U (φ ) = U U_UVW_FOC3(U_D, PHI_E) = W D I (φ ) = ID U e IV (φe ) = ID I (φ ) = I I_UVW_FOC3(I_D, PHI_E) = W 4.5.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.5.4 39 / 142 ADC Selector & ADC Scaler w/ Offset Correction The ADC selector selects ADC channels for FOC. The 3-phase FOC uses two ADC channels for measurement and calculates the third channel via Kirchhoff’s Law using the scaled and offset-corrected ADC values. The 2-phase FOC just uses two ADC channels because for a 2-phase stepper motor, the two phases are independent from each other.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 40 / 142 scaling and offset correction beforehand. For FOC2, there is no calculation of a third current. The scaling factors ADC_I0_SCALE and ADC_I1_SCALE are displayed in a Q8.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 Note 41 / 142 The open-loop encoder is useful for initial ADC setup, encoder setup, Hall signal validation, and for validation of the number of pole pairs of a motor. The openloop encoder turns a motor open with programmable velocity in unit [RPM] with programmable acceleration in unit [RPM/s].
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 42 / 142 The goal of the initialization of an incremental encoder is to set it up so that the magnetic axis of the rotor fits with the electrical angle phi_e with the angle zero on D axis. For this, one needs to know the number of pole pairs NPP, the resolution of the incremental encoder in pulses per revolution PPR, and the orientation between measured encoder angle of the rotor and the electrical angle of the field orientation.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 43 / 142 Figure 22: Encoder ABN Timing - high precise N pulse and less precise N pulse 4.6.3 Secondary Incremental ABN Encoder For commutating a motor with FOC, the user selects a position sensor source (digital incremental encoder, digital Hall, analog Hall, analog incremental encoder, . . . ) that is mounted close to the motor.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 44 / 142 Figure 23: Hall Sensor Angles Hall sensors give absolute positions within an electrical period with a resolution of 60° as 16 bit positions (s16 resp. u16) PHI. With activated interim Hall position interpolation, the user gets high resolution interim positions when the motor is running at a speed above 60 rpm. 4.6.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 45 / 142 Figure 24: Outline of noisy Hall signals (left) due to electromagnetic interference with PWM switching and noise cleaned Hall signals (right) by PWM center synced sampling of Hall signal vector (H1 H2 H3) The best is avoiding spikes on digital Hall signals.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.6.7 Digital Hall Sensors together with Incremental Encoder If a motor is equipped with both Hall sensors and incremental encoder, the Hall sensors can be used for the initialization as a low resolution absolute position sensor. Later on, the incremental encoder can be used as a high resolution sensor for commutation. 4.6.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 47 / 142 Figure 28: Analog Encoder (AENC) Selector & Scaler w/ Offset Correction In Fig. 27 possible waveforms are shown. The graphs show usual SIN/COS track signals with one and multiple periods per revolution as well as typical waveforms of three phase analog Hall signals for one electrical revolution. The number of periods per revolution can be configured by register AENC_DECODER_PPR.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.6.9.3 48 / 142 External Position Register A register value written into the register bank via the application interface is available for commutation as well. With this, the user can interface to any encoder by just writing positions extracted from external encoder into this regulator. From the decoder engine point of view this is just one more selectable encoder source. 4.6.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.6.12 49 / 142 Reference Switches The TMC4671 is equipped with three input pins for reference switches (REF_SW_L, REF_SW_H and REF_SW_R). These pins can be used to determine three reference positions. The TMC4671 displays the status of the reference switches in the register TMC_INPUTS_RAW and is able to store the actual position at rising edge of the corresponding signal.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.7 50 / 142 FOC23 Engine The FOC23 engine performs the inner current control loop for the torque current IQ and the flux current ID including the required transformations. Programmable limiters take carep of clipping of interim results. p Per default, the programmable circular limiter clips U_D and U_Q to U_D_R = (2)· U_Q and U_R_R = (2)· U_D. PI controllers perform the regulation tasks.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 52 / 142 Figure 29: Classic PI Controller Info Changing the I-parameter of the classic PI controller during operation causes the controller output to jump, as the control error is first integrated and then gained by the I parameter. Jumps can be avoided by incremental changes of I-parameter. Info Support for the TMC4671 is integrated into the TMCL-IDE including wizards for set up and configuration.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 53 / 142 Figure 30: Advanced PI Controller Info The P Factor normalization as Q8.8 of the advanced PI controller of the TMC4671ES is selectable for the TMC4671-LA as either Q8.8 or Q4.12. Using Q4.12 needs changes in the user’s application controller software when using the Advanced PI position controller.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 Figure 31: PI Controllers for position, velocity and current 4.7.6 PI Flux & PI Torque Controller The P part is represented as q8.8 and I is the I part represented as q0.15. 4.7.7 PI Velocity Controller The P part is represented as q8.8 and I is the I part represented as q0.15. ©2020 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany Terms of delivery and rights to technical change reserved.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.7.8 55 / 142 P Position Controller For the position regulator, the P part is represented as q4.12 to be compatible with the high resolution positions - one single rotation is handled as an s16. For the advanced controller structure the P part is represented by q8.8. 4.7.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 56 / 142 Figure 33: FOC3 Transformations (FOC2 just skips CLARKE and iCLARKE) 4.7.11 Motion Modes The user can operate the TMC4671 in several motion modes. Standard motion modes are position control, velocity control and torque control, where target values are fed into the controllers via register access. The motion mode UD_UQ_EXTERN allows the user to set voltages for open-loop operation and for tests during setup.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 There are additional motion modes, which are using input from the PWM_I input or the AGPI_A input. Input signals can be scaled via a standard scaler providing offset and gain correction. The interface can be configured via the registers SINGLE_PIN_IF_OFFSET_SCALE and SINGLE_PIN_IF_STATUS_CFG, where the status of the interface can be monitored as well. PWM input signals which are out of frequency range can be neglected.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.8 58 / 142 Filtering and Feed-Forward Control The TMC4671 uses different filters for certain target and actual values. When using standard velocity meter, a standard velocity filter is used which is optimized for velocity signals from Hall sensors. Additional Biquad filters can be used to suppress measurement noise or damp resonances. 4.8.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 59 / 142 Figure 35: Biquad Filters The biquad filter for the position target value is intended to be used as a low-pass filter for smoothening position input to the control structure. It is evaluated in every PWM cycle, or down-sampled according to the down-sampling factor for the velocity and position controllers. After powering on it is disabled.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 60 / 142 Figure 36: DT1 Element Structure Equations: e = X − int_val Z int_val = a_0 e dt (47) Y = b_1 · e (48) (46) The coefficients a_0 and b_1 are represented in Q2.30 format. Registers for parametrization of the feed-forward control structure are feed_forward_velocity_gain, feed_forward_velocity_filter_constant, feed_forward_torque_gain, and feed_forward_torque_filter_constant.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.9 PWM Engine The PWM engine takes care of converting voltage vectors to pulse width modulated (PWM) control signals. These digital PWM signals control the gate drivers of the power stage. For a detailed description of the PWM control registers and PWM register control bits pls. refer section 7 page 68. The ease-of-use PWM engine requires just a couple of parameter settings.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.9.2 PWM Engine and associated Motor Connectors The PWM engine of the TMC4671 has eight gate control outputs to control up to four power MOS half bridges. For three-phase motors tree half bridges are used (U, V, W). For two-phase stepper motors four half bridges are used for (U, V, W, Y). For DC motor control, the first two half bridges (U, V) are used.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4.9.3 63 / 142 PWM Frequency The PWM counter maximum length register PWM_MAXCNT controls the PWM frequency. For a clock frequency fCLK = 25 MHz, the PWM frequency fPWM[Hz] = (4.0 · fCLK [Hz]) / (PWM_MAXCNT + 1). With fCLK = 25 MHz and power-on reset (POR) default of PWM_MAXCNT=3999, the PWM frequency fPWM = 25 kHz. Note 4.9.4 The PWM frequency is the fundamental frequency of the control system.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 Info Note 4.9.7 64 / 142 Measured BBM times at MOS-FET gates differ from programmed BBM times due to driver delays and possible additional gate driver BBM times. The programmed BBM times are for the digital control signals. Too short BBM times cause electrical shortcuts of the MOS-FET bridges - so called shoot through - that short the power supply and might damage the power stage and the power supply.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 6 66 / 142 FOC Setup - How to Turn a Motor This section summarizes the basic steps that are required to turn a motor with TMC4671. The wizard of the TMCL-IDE guides the user through theses basic steps. Schematics and Layout of the TMC4671 evaluation kit are open source and available for download from www.trinamic.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 6.3 67 / 142 Run Motor Open Loop Initial turning a motor open loop is useful for determination of the association between phase voltage, phase currents and for position sensor setup. Position sensors that are mounted on a motor might have an opposite direction of rotation compared to the motor. The same direction of rotation is essential for the FOC.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 68 / 142 positioning to have a benefit from higher resolution using electrical angles. This is because each period electrical or mechanical - is normalized to 216 = 65536 positions. 6.5 Modes of Operation - (Open Loop), Torque, Velocity, Positioning The TMC4671 can operate in torque mode, velocity mode, or position mode.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 7.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 Address Registername Access 0x79h UART_BPS RW 0x7Bh GPIO_dsADCI_CONFIG RW 0x7Ch STATUS_FLAGS RW 0x7Dh STATUS_MASK RW Table 24: TMC4671 Registers ©2020 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany Terms of delivery and rights to technical change reserved. Download newest version at www.trinamic.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 7.2 Register Map - Functional Description DATA TYPE ADDR NAME 0x00h CHIPINFO_DATA 0x01h (BIT MASK) FUNCTION SI_TYPE u32(31:0) 0: Hardware type (ASCII). SI_VERSION u32(31:0) 0: Hardware version (u16.u16). SI_DATE u32(31:0) 0: Hardware date (nibble wise date stamp yyyymmdd).
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 cfg_dsmodulator_a u2(1:0) 0: int. dsMOD 1: ext. MCLK input 2: ext. MCLK output 3: ext. CMP mclk_polarity_a bit(2) 0: off 1: on mdat_polarity_a bit(3) 0: off 1: on sel_nclk_mclk_i_a bit(4) 0: off 1: on blanking_a u8(15:8) cfg_dsmodulator_b u2(17:16) 0: int. dsMOD 1: ext. MCLK input 2: ext. MCLK output 3: ext.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 ADC_I1_SCALE 0x09h 0x0Ah s16(31:16) Scaling factor for current ADC channel 1. ADC_I0_OFFSET u16(15:0) Offset for current ADC channel 0. ADC_I0_SCALE s16(31:16) Scaling factor for current ADC channel 0. u8(7:0) Select input for raw current ADC_ I0_RAW.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 1: GND vs. INN 2: VDD/4 3: 3*VDD/4 4: INP vs. GND 5: VDD/2 6: VDD/4 7: 3*VDD/4 ADC_I1 u4(7:4) 0: INP vs. INN 1: GND vs. INN 2: VDD/4 3: 3*VDD/4 4: INP vs. GND 5: VDD/2 6: VDD/4 7: 3*VDD/4 ADC_VM u4(11:8) 0: INP vs. INN 1: GND vs. INN 2: VDD/4 3: 3*VDD/4 4: INP vs. GND 5: VDD/2 6: VDD/4 7: 3*VDD/4 ADC_AGPI_A u4(15:12) 0: INP vs. INN 1: GND vs. INN 2: VDD/4 3: 3*VDD/4 4: INP vs.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 5: VDD/2 6: VDD/4 7: 3*VDD/4 ADC_AENC_UX u4(23:20) 0: INP vs. INN 1: GND vs. INN 2: VDD/4 3: 3*VDD/4 4: INP vs. GND 5: VDD/2 6: VDD/4 7: 3*VDD/4 ADC_AENC_VN u4(27:24) 0: INP vs. INN 1: GND vs. INN 2: VDD/4 3: 3*VDD/4 4: INP vs. GND 5: VDD/2 6: VDD/4 7: 3*VDD/4 ADC_AENC_WY u4(31:28) 0: INP vs. INN 1: GND vs. INN 2: VDD/4 3: 3*VDD/4 4: INP vs.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 0x0Fh 0x11h AENC_2_SCALE_OFFSET AENC_2_OFFSET u16(15:0) Offset for Analog Encoder ADC channel 2. AENC_2_SCALE s16(31:16) Scaling factor for Analog Encoder ADC channel 2. u8(7:0) Select analog encoder ADC channel for raw analog encoder signal AENC_0_RAW.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 AENC_WY 0x16h Register of scaled analog encoder value including signed added offset as input for the interpolator. s16(15:0) Register of scaled analog encoder value including signed added offset as input for the interpolator.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 0x1Bh MOTOR_TYPE_N_POLE_PAIRS N_POLE_PAIRS u16(15:0) Number n of pole pairs of the motor for calcualtion phi_e = phi_m / N_POLE_PAIRS. MOTOR_TYPE u8(23:16) 0: No motor 1: Single phase DC 2: Two phase Stepper 3: Three phase BLDC 0x1Ch PHI_E_EXT PHI_E_EXT 0x1Fh s16(15:0) Electrical angle phi_e_ext for external writing into this register. bit(12) Open loop phi direction.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 bpol bit(1) Polarity of B pulse. 0: off 1: on npol bit(2) Polarity of N pulse. 0: off 1: on use_abn_as_n bit(3) N and A and B 0: Ignore A and B polarity with Npulse = N 1: Npulse = N and A and B cln bit(8) Write direction at Npulse event between ABN_DECODER_COUNT_N and ABN_DECODER_COUNT. 0: COUNT => COUNT_N 1: COUNT_N => COUNT direction bit(12) Decoder count direction.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 ABN_DECODER_PHI_E 0x2Ch s16(31:16) ABN_DECODER_PHI_E = (ABN_ DECODER_PHI_M * N_POLE_ PAIRS_) + ABN_DECODER_PHI_E_ OFFSET bit(0) Polarity of A pulse. ABN_2_DECODER_MODE apol 0: off 1: on bpol bit(1) Polarity of B pulse. 0: off 1: on npol bit(2) Polarity of N pulse.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 ABN_2_DECODER_COUNT_N 0x30h s16(15:0) ABN_2_DECODER_PHI_M_OFFSET to shift (rotate) angle DECODER_2_ PHI_M. s16(15:0) ABN_2_DECODER_PHI_M = ABN_ 2_DECODER_COUNT * 2^16 / ABN_2_DECODER_PPR + ABN_2_ DECODER_PHI_M_OFFSET; bit(0) polarity ABN_2_DECODER_PHI_M ABN_2_DECODER_PHI_M 0x33h Decoder_2 count latched on N pulse, when N pulse clears decoder_2_count also decoder_2_ count_n is 0.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 HALL_DPHI_MAX 0x39h 0x3Ah u16(15:0) Maximum dx for interpolation (default for digital hall: u16/6). HALL_PHI_E s16(15:0) Raw electrical angle hall_phi_e of hall decoder, selection programmed via HALL_MODE control bit. HALL_PHI_E_INTERPOLATED s16(31:16) Interpolated electrical angle hall_ phi_e_interpolated, selection programmed via HALL_MODE control bit. s16(15:0) Mechanical angle hall_phi_m of hall decoder.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 AENC_DECODER_PHI_A 0x40h s16(15:0) Resulting phi available for the FOC (phi_e might need to be calculated from this angle via aenc_decoder_ ppr, for analog hall sensors phi_ a might be used directly as phi_ e depends on analog hall signal type). s16(15:0) Number of periods per revolution also called lines per revolution (different nomenclatur compared to digital ABN encoders).
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 51: ref_switch_config 52: Encoder_Init_hall_Enable 60: SINGLE_PIN_IF_STATUS_CFG 61: SINGLE_PIN_IF_SCALE_OFFSET 0x50h VELOCITY_SELECTION VELOCITY_SELECTION u8(7:0) Selects the source of the velocity source for velocity measurement.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 PID_VELOCITY_LIMIT 0x61h s32(31:0) Position limit low, programmable positon barrier. s32(31:0) Position limit high, programmable positon barrier. u8(7:0) 0: stopped_mode PID_POSITION_LIMIT_HIGH PID_POSITION_LIMIT_HIGH 0x63h Velocity limit.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 PID_TORQUE_OFFSET 0x66h 0x6Ah 0x6Dh Velocity offset for feed forward control. s32(31:0) Target position register (for position mode). PID_FLUX_ACTUAL s16(15:0) PID_TORQUE_ACTUAL s16(31:16) PID_VELOCITY_ACTUAL s32(31:0) Actual velocity. s32(31:0) Actual multi turn position for positioning. Input position differences are accumulated. Lower 16 bits display one revolution of input angle.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 4: PID_TORQUE_ERROR_SUM 5: PID_FLUX_ERROR_SUM 6: PID_VELOCITY_ERROR_SUM 7: PID_POSITION_ERROR_SUM 0x6Eh INTERIM_DATA PIDIN_TARGET_TORQUE s32(31:0) PIDIN target torque. PIDIN_TARGET_FLUX s32(31:0) PIDIN target flux. PIDIN_TARGET_VELOCITY s32(31:0) PIDIN target velocity. PIDIN_TARGET_POSITION s32(31:0) PIDIN target position. PIDOUT_TARGET_TORQUE s32(31:0) PIDOUT target torque.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 36: ENC_INIT_HALL_PHI_E_AENC_ OFFSET 37: ENC_INIT_HALL_PHI_A_AENC_ OFFSET 42: SINGLE_PIN_IF_PWM_DUTY_ CYCLE_TORQUE_TARGET 43: SINGLE_PIN_IF_VELOCITY_ TARGET 44: SINGLE_PIN_IF_POSITION_ TARGET 0x75h 0x76h ADC_VM_LIMITS ADC_VM_LIMIT_LOW u16(15:0) Low limit for brake chopper output BRAKE_OUT. ADC_VM_LIMIT_HIGH u16(31:16) High limit for brake chopper output BRAKE_OUT.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 STATUS_FLAGS[28] bit(28) enc_n 0: off 1: on STATUS_FLAGS[29] bit(29) enc_2_n 0: off 1: on STATUS_FLAGS[30] bit(30) aenc_n 0: off 1: on STATUS_FLAGS[31] bit(31) reserved 0: off 1: on 0x7Dh STATUS_MASK STATUS_MASK u32(31:0) ©2020 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany Terms of delivery and rights to technical change reserved. Download newest version at www.trinamic.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 7.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 8 Pinning Figure 40: TMC4671 Pinout with 3 phase Power stage and BLDC Motor Figure 41: TMC4671 Pinout with Stepper Motor ©2020 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany Terms of delivery and rights to technical change reserved. Download newest version at www.trinamic.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 121 / 142 Figure 42: TMC4671 Pinout with DC Motor or Voice Coil Info All power supply pins (VCC, VCC_CORE) must be connected. All ground pins (GND, GNDA, . . . ) must be connected. Analog inputs (AI) are 5V single ended or differential inputs (Input range: GNDA to V5). Use voltage dividers or operational amplifiers to scale down higher input voltages. Digital inputs (I) resp. (IO) are 3.3V single ended inputs.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 123 / 142 Name Pin IO Description ADC_I0_NEG 17 AI neg. input for phase current signal measurement I0 (I_U, I_X) ADC_I1_POS 18 AI pos. input for phase current signal measurement I1 (I_V, I_W, I_Y) ADC_I1_NEG 19 AI neg.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 Name Pin IO VCCIO1 2 3.3V digital IO supply voltage; use 100 nF decoupling capacitor VCCIO2 13 3.3V digital IO supply voltage; use 100 nF decoupling capacitor VCCIO3 43 3.3V digital IO supply voltage; use 100 nF decoupling capacitor VCCIO4 52 3.3V digital IO supply voltage; use 100 nF decoupling capacitor VCCIO5 61 3.3V digital IO supply voltage; use 100 nF decoupling capacitor VCCIO6 72 3.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 10 Electrical Characteristics 10.1 Absolute Maximum Ratings The maximum ratings may not be exceeded under any circumstances. Operating the circuit at or near more than one maximum rating at a time for extended periods shall be avoided by application design. Parameter Symbol Digital I/O supply voltage Min Max Unit VCCIO 3.6 V Logic input voltage VI 3.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 10.2.2 DC Characteristics DC characteristics contain the spread of values guaranteed within the specified supply voltage range unless otherwise specified. Typical values represent the average value of all parts measured at +25 °C. Temperature variation also causes stray to some values. A device with typical values will not leave Min/Max range within the full temperature range.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 11 Sample Circuits Please consider electrical characteristics while designing electrical circuitry. Most Sample Circuits in this chapter were taken from the evalutation board for the TMC4671 (TMC4671-EVAL). 11.1 Supply Pins Please provide VCCIO and V5 to the TMC4671. VCC_CORE is internally generated and needs just an external decoupling capacitor. Place one 100nF decoupling capacitor at every supply pin.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 Application RP U RP D RLN CP 5 V Encoder signal 4K7 n.c. 100R 100pF Table 34: Reference Values for circuitry components The raw signal (ENC_A_RAW) is divided by a voltage divider and filtered by a low-pass filter. A pull up resistor is applied for open collector encoder output signals. Diodes protect the input pin (ENC_A) against over- and undervoltage. The cutoff-frequency of the low-pass is: fc = 11.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 130 / 142 Figure 45: Phase current measurement: Current directions for 2 and 3 phase motors Figure 46: Phase current measurement: Current direction for DC or Voice Coil Motor There are two main options for measuring the phase currents as described above. First option is to use a shunt resistor and a shunt amplifier like the LT1999 or the AD8418A.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 131 / 142 sensors with voltage output can be used. These could use the Hall effect or other magnetic effects. Main concerns to take about is bandwidth, accuracy and measurement range. Figure 47: Current Shunt Amplifier Sample Circuit 11.6 Power Stage Interface The TMC4671 is equipped with a configurable PWM engine for control of various gate drivers. Gate driver switch signals can be matched to power stage needs.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 12 132 / 142 Setup Guidelines For easy setup of the TMC4671 on a given hardware platform like the TMC4671 Evaluation-Kit, the user should follow these general guidelines in order to safely set up the system for various modes of operation. Info These guidelines fit to hardware platforms which are comparable to the TMC4671Evaluation Kit. If system structure differs, configuration has to be adjusted.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 13 Package Dimensions Package: QFN76, 0.4 mm pitch, size 11.5 mm x 6.5 mm. Figure 48: QFN76 Package Outline QFN76 Package Dimensions in mm Description Dimension[mm] min. typ. max. Total Thickness A 0.80 0.85 0.90 Stand Off A1 0.00 0.035 0.05 Mold Thickness A2 — 0.65 — L/F Thickness A3 Lead Width b Body Width D 10.5 BSC Body Length E 6.5 BSC Lead Pitch e 0.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 QFN76 Package Dimensions in mm EP Size J 8.9 9 9.1 EP Size K 4.9 5 5.1 Lead Length L 0.35 0.40 0.45 Lead Length L1 0.30 0.35 0.40 Package Edge Tolerance aaa 0.1 Mold Flatness bbb 0.1 Coplanarity ccc 0.08 Lead Offset ddd 0.1 Exposed Pad Offset eee 0.1 Table 35: Package Outline Dimensions Figure 49 shows the package from top view.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 14 135 / 142 Supplemental Directives 14.1 Producer Information 14.2 Copyright TRINAMIC owns the content of this user manual in its entirety, including but not limited to pictures, logos, trademarks, and resources. © Copyright 2020 TRINAMIC. All rights reserved. Electronically published by TRINAMIC, Germany.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 136 / 142 or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.
/ 142 TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 15 Fixes of TMC4671-LA/-ES2 vs.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 138 / 142 6. Space Vector PWM does not allow higher voltage utilization The Space vector PWM of the TMC4671-ES does not allow higher voltage utilization. 7. Step Direction Counter not used as Target Position The step direction counter of the TMC4671-ES correctly counts but is not available as target position. 8.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 139 / 142 Figures Index FOC Basic Principle . . . . . . . . . . . . PID Architectures and Motion Modes . Orientations UVW (FOC3) and XY (FOC2) Compass Motor Model w/ 3 Phases UVW (FOC3) and Compass Motor Model w/ 2 Phases (FOC2) . . . . . . . . Hardware FOC Application Diagram . . Hardware FOC Block Diagram . . . . . SPI Datagram Structure . . . . . . . . .
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 140 / 142 Tables Index Order codes . . . . . . . . . . . . . . . . SPI Timing Parameter . . . . . . . . . . Single Pin Interface Motion Modes . . . Numerical Representations . . . . . . . Examples of u16, s16, q8.8, q4.12 . . . Examples of u16, s16, q8.8 . . . . . . . Delta Sigma ∆Σ ADC Input Stage Configurations . . . . . . . . . . . . . .
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 18 141 / 142 Revision History 18.1 IC Revision Version Date Author Description V1.0 2017-JUL-03 LL, OM Engineering samples TMC4671-ES (1v0 2017-07-03-19:43) V1.3 2019-APR-30 LL, OM Release version TMC4671-LA (1v3 2019-04-30-12:55) Table 37: IC Revision 18.2 Document Revision Version Date Author Description V0.9 2017-SEP-29 LL, OM Pre-liminary TMC4671-ES datasheet. V0.
TMC4671 Datasheet • IC Version V1.3 | Document Revision V2.00 • 2020-Apr-17 142 / 142 Version Date Author Description V1.99 2019-DEC-06 LL functional summary updated for TMC4671-LA, FOC basics updated, functional description updated, SPI read write access timing updated for TMC4671-LA, ADC Engine section updated w/ voltage scalings, step direction interface correction updated, order codes updated, section ’Calculative PI Controller Setup - Classic Structure’ added; TMC4671-ES Erratum vs.