Datasheet
DPWM3B
(QT1)
DPWM2A
(QT2)
DPWM2B
(QB2)
VTrans
DPWM0B
(QSYN2,4)
DPWM1B
(QSYN1,3)
IPRI
DPWM3A
(QB1)
UCD3138
www.ti.com
SLUSAP2F –MARCH 2012–REVISED NOVEMBER 2013
4.11 Sync FET Ramp and IDE Calculation
The UCD3138 has built in logic for controlling MOSFETs for synchronous rectification (Sync FETs). This
comes in two forms:
• Sync FET ramp
• Ideal Diode Emulation (IDE) calculation
When starting up a power supply, sometimes there is already a voltage on the output – this is called
prebias. It is very difficult to calculate the ideal Sync FET on-time for this case. If it is not calculated
correctly, it may pull down the pre-bias voltage, causing the power supply to sink current.
To avoid this, Sync FETs are not turned on until after the power supply has ramped up to the nominal
voltage. The Sync FETs are turned on gradually in order to avoid an output voltage glitch. The Sync FET
Ramp logic can be used to turn them on at a rate below the bandwidth of the filter.
In discontinuous mode, the ideal on-time for the Sync FETs is a function of Vin, Vout, and the primary side
duty cycle (D). The IDE logic in the UCD3138 takes Vin and Vout data from the firmware and combines it
with D data from the filter hardware. It uses this information to calculate the ideal on-time for the Sync
FETs.
4.12 Automatic Mode Switching
Automatic Mode switching enables the DPWM module to switch between modes automatically, with no
firmware intervention. This is useful to increase efficiency and power range. The following paragraphs
describe phase-shifted full bridge and LLC examples:
4.12.1 Phase Shifted Full Bridge Example
In phase shifted full bridge topologies, efficiency can be increased by using pulse width modulation, rather
than phase shift, at light load. This is shown below:
Copyright © 2012–2013, Texas Instruments Incorporated Functional Overview 41
Submit Documentation Feedback
Product Folder Links: UCD3138