Datasheet
UCC27518
UCC27519
SLUSB33 –MAY 2012
www.ti.com
Low Propagation Delays
The UCC27518 and UCC27519 driver device features best-in-class input-to-output propagation delay of 17 ns
(typ) at VDD = 12 V. This promises the lowest level of pulse transmission distortion available from industry
standard gate driver devices for high-frequency switching applications. As seen in Figure 14, there is very little
variation of the propagation delay with temperature and supply voltage as well, offering typically less than 20-ns
propagation delays across the entire range of application conditions.
Thermal Information
The useful range of a driver is greatly affected by the drive power requirements of the load and the thermal
characteristics of the package. In order for a gate driver to be useful over a particular temperature range the
package must allow for the efficient removal of the heat produced while keeping the junction temperature within
rated limits. The thermal metrics for the driver package is summarized in the Thermal Information section of the
datasheet. For detailed information regarding the thermal information table, please refer to the Application Note
from Texas Instruments entitled IC Package Thermal Metrics (Texas Instruments Literature Number SPRA953A).
PCB Layout
Proper PCB layout is extremely important in a high-current, fast-switching circuit to provide appropriate device
operation and design robustness. The UCC27518 and UCC27519 gate driver incorporates short-propagation
delays and powerful output stages capable of delivering large current peaks with very fast rise and fall times at
the gate of power switch to facilitate voltage transitions very quickly. At higher VDD voltages, the peak-current
capability is even higher (4-A/4-A peak current is at VDD = 12 V). Very high di/dt can cause unacceptable ringing
if the trace lengths and impedances are not well controlled. The following circuit layout guidelines are strongly
recommended when designing with these high-speed drivers.
• Locate the driver device as close as possible to power device in order to minimize the length of high-current
traces between the output pins and the gate of the power device.
• Locate the VDD bypass capacitors between VDD and GND as close as possible to the driver with minimal
trace length to improve the noise filtering. These capacitors support high-peak current being drawn from VDD
during turnon of power MOSFET. The use of low inductance SMD components such as chip resistors and
chip capacitors is highly recommended.
• The turn-on and turn-off current loop paths (driver device, power MOSFET and VDD bypass capacitor) should
be minimized as much as possible in order to keep the stray inductance to a minimum. High dI/dt is
established in these loops at two instances – during turn-on and turn-off transients, which will induce
significant voltage transients on the output pin of the driver device and gate of the power switch.
• Wherever possible parallel the source and return traces, taking advantage of flux cancellation.
• Separate power traces and signal traces, such as output and input signals.
• Star-point grounding is a good way to minimize noise coupling from one current loop to another. The GND of
the driver should be connected to the other circuit nodes such as source of power switch, ground of PWM
controller etc at one, single point. The connected paths should be as short as possible to reduce inductance
and be as wide as possible to reduce resistance.
• Use a ground plane to provide noise shielding. Fast rise and fall times at OUT may corrupt the input signals
during transition. The ground plane must not be a conduction path for any current loop. Instead the ground
plane must be connected to the star-point with one single trace to establish the ground potential. In addition
to noise shielding, the ground plane can help in power dissipation as well.
18 Submit Documentation Feedback Copyright © 2012, Texas Instruments Incorporated
Product Folder Link(s): UCC27518 UCC27519