Datasheet

83
For example, load capacitors (C9 and C10 in Figure 84) of 16 pF each were appropriate for the layout of the
TSB43AB23 evaluation module (EVM), which uses a crystal specified for 12-pF loading. The load specified for the
crystal includes the load capacitors (C9 and C10), the loading of the PHY pins (C
PHY
), and the loading of the board
itself (C
BD
). The value of C
PHY
is typically about 1 pF, and C
BD
is typically 0.8 pF per centimeter of board etch; a typical
board can have 3 pF to 6 pF or more. The load capacitors C9 and C10 combine as capacitors in series so that the
total load capacitance is:
C
L
+
C9 C10
C9 ) C10
) C
PHY
) C
BD
X1
24.576 MHz
I
S
X1
C
PHY
+ C
BD
X0
C10
C9
Figure 84. Load Capacitance for the TSB43AB23 PHY
The layout of the crystal portion of the PHY circuit is important for obtaining the correct frequency, minimizing noise
introduced into the PHY phase-lock loop, and minimizing any emissions from the circuit. The crystal and two load
capacitors must be considered as a unit during layout. The crystal and the load capacitors must be placed as close
as possible to one another while minimizing the loop area created by the combination of the three components.
Varying the size of the capacitors may help in this. Minimizing the loop area minimizes the effect of the resonant
current (Is) that flows in this resonant circuit. This layout unit (crystal and load capacitors) must then be placed as
close as possible to the PHY X1 and X0 pins to minimize etch lengths, as shown in Figure 85.
C9 C10
X1
For more details on crystal selection, see application report SLLA051 available from the TI website:
http://www.ti.com/sc/1394.
Figure 85. Recommended Crystal and Capacitor Layout
8.3 Bus Reset
In the TSB43AB23 device, the initiate bus reset (IBR) bit may be set to 1 in order to initiate a bus reset and initialization
sequence. The IBR bit is located in PHY register 1, along with the root-holdoff bit (RHB) and Gap_Count field, as
required by IEEE Std 1394a-2000. Therefore, whenever the IBR bit is written, the RHB and Gap_Count are also
written.
The RHB and Gap_Count may also be updated by PHY-config packets. The TSB43AB23 device is IEEE 1394a-2000
compliant, and therefore both the reception and transmission of PHY-config packets cause the RHB and Gap_Count
to be loaded, unlike older IEEE 1394-1995 compliant PHY devices which decode only received PHY-config packets.
The gap-count is set to the maximum value of 63 after 2 consecutive bus resets without an intervening write to the
Gap_Count, either by a write to PHY register 1 or by a PHY-config packet. This mechanism allows a PHY-config