Datasheet

TPS7301Q, TPS7325Q, TPS7330Q, TPS7333Q, TPS7348Q, TPS7350Q
LOW-DROPOUT VOLTAGE REGULATORS
WITH INTEGRATED DELAYED RESET FUNCTION
SLVS124F – JUNE 1995 – REVISED JANUARY 1999
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TPS7330Q electrical characteristics at I
O
= 10 mA, V
I
= 4 V, EN = 0 V, C
o
= 4.7 µF (CSR
= 1 ), SENSE
shorted to OUT (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
J
MIN TYP MAX
UNIT
Out
p
ut voltage
25°C 3
V
O
u
tp
u
t
v
oltage
4 V V
I
10 V, 5 mA I
O
500 mA –40°C to 125°C 2.94 3.06
V
I
O
=10mA
V
I
= 2 94 V
25°C 5.2 7
I
O
=
10
mA
,
V
I
=
2
.
94
V
–40°C to 125°C 10
Dropout voltage
I
O
= 100 mA
V
I
= 2 94 V
25°C 52 75
mV
D
ropou
t
vo
lt
age
I
O
=
100
mA
,
V
I
=
2
.
94
V
–40°C to 125°C 100
mV
I
O
= 500 mA
V
I
= 2 94 V
25°C 267 450
I
O
=
500
mA
,
V
I
=
2
.
94
V
–40°C to 125°C 500
Pass element series resistance
(2.94 V – V
O
)/I
O
, V
I
= 2.94 V,
25°C 0.5 0.7
Pass
-
element
series
resistance
(
O
)
O
,
I
O
= 500 mA
I
,
–40°C to 125°C 1
In
p
ut regulation
V
I
=4Vto10V
50 µA I
O
500 mA
25°C 6 23
mV
Inp
u
t
reg
u
lation
V
I
=
4
V
to
10
V
,
50
µ
A
I
O
500
mA
–40°C to 125°C 29
mV
I
O
=5mAto500mA
4VV
I
10 V
25°C 20 32
mV
Out
p
ut regulation
I
O
=
5
mA
to
500
mA
,
4
V
V
I
10
V
–40°C to 125°C 60
mV
O
u
tp
u
t
reg
u
lation
I
O
=50µA to 500 mA
4VV
I
10 V
25°C 28 60
mV
I
O
=
50
µ
A
to
500
mA
,
4
V
V
I
10
V
–40°C to 125°C 120
mV
I
O
=50µA
25°C 43 53
Ri
pp
le rejection
f = 120 Hz
I
O
=
50
µ
A
–40°C to 125°C 40
dB
Ripple
rejection
f
=
120
H
z
I
O
= 500 mA
25°C 39 53
dB
I
O
=
500
mA
–40°C to 125°C 36
Output noise-spectral density f = 120 Hz 25°C 2
µV/Hz
C
o
= 4.7 µF
25°C 274
Output noise voltage 10 Hz f 100 kHz
C
o
= 10 µF
25°C 228
µVrms
C
o
= 100 µF
25°C 159
RESET trip-threshold voltage
V
O
decreasing –40°C to 125°C 2.58 2.64 2.7 V
RESET out
p
ut low voltage
V
I
=26V
I
O(RESET)
=08mA
25°C 0.14 0.4
V
RESET
output
low
voltage
V
I
=
2
.
6
V
,
I
O(RESET)
= –
0
.
8
mA
–40°C to 125°C 0.4
V
CSR refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance
to C
o
.
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must
be taken into account separately.